Bolt Pretension#

This example demonstrates how to insert a Static Structural analysis into a new Mechanical session and execute a sequence of Python scripting commands that define and solve a bolt-pretension analysis. Scripts then evaluate the following results: deformation, equivalent stresses, contact, and bolt

Import necessary libraries#

import os

from ansys.mechanical.core import launch_mechanical
from ansys.mechanical.core.examples import download_file
from matplotlib import image as mpimg
from matplotlib import pyplot as plt

Launch mechanical#

Launch a new Mechanical session in batch, setting the cleanup_on_exit argument to False. To close this Mechanical session when finished, this example must call the mechanical.exit() method.

mechanical = launch_mechanical(batch=True, cleanup_on_exit=False)
print(mechanical)
Ansys Mechanical [Ansys Mechanical Enterprise]
Product Version:241
Software build date: 11/27/2023 10:24:20

Initialize variable for workflow#

Set the part_file_path variable on the server for later use. Make this variable compatible for Windows, Linux, and Docker containers.

project_directory = mechanical.project_directory
print(f"project directory = {project_directory}")
project directory = /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/

Download required geometry file#

Download the required file. Print the file path for the geometry file.

geometry_path = download_file(
    "example_06_bolt_pret_geom.agdb", "pymechanical", "00_basic"
)
print(f"Downloaded the geometry file to: {geometry_path}")
Downloaded the geometry file to: /home/runner/.local/share/ansys_mechanical_core/examples/example_06_bolt_pret_geom.agdb

Upload the file to the project directory

mechanical.upload(file_name=geometry_path, file_location_destination=project_directory)
Uploading example_06_bolt_pret_geom.agdb to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/.:   0%|          | 0.00/2.52M [00:00<?, ?B/s]
Uploading example_06_bolt_pret_geom.agdb to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/.: 100%|██████████| 2.52M/2.52M [00:00<00:00, 257MB/s]

'example_06_bolt_pret_geom.agdb'

Build the path relative to project directory and verify

base_name = os.path.basename(geometry_path)
combined_path = os.path.join(project_directory, base_name)
part_file_path = combined_path.replace("\\", "\\\\")
mechanical.run_python_script(f"part_file_path='{part_file_path}'")
result = mechanical.run_python_script("part_file_path")
print(f"Geometry file on server: {result}")
Geometry file on server: /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/example_06_bolt_pret_geom.agdb

Download required material file#

Download the required file. Print the file path for the material file

mat_cop_path = download_file("example_06_Mat_Copper.xml", "pymechanical", "00_basic")
print(f"Downloaded the material file to: {mat_cop_path}")
mat_st_path = download_file("example_06_Mat_Steel.xml", "pymechanical", "00_basic")
print(f"Downloaded the material file to: {mat_st_path}")
Downloaded the material file to: /home/runner/.local/share/ansys_mechanical_core/examples/example_06_Mat_Copper.xml
Downloaded the material file to: /home/runner/.local/share/ansys_mechanical_core/examples/example_06_Mat_Steel.xml

Upload the file to the project directory

mechanical.upload(file_name=mat_cop_path, file_location_destination=project_directory)
mechanical.upload(file_name=mat_st_path, file_location_destination=project_directory)
Uploading example_06_Mat_Copper.xml to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/.:   0%|          | 0.00/5.00k [00:00<?, ?B/s]
Uploading example_06_Mat_Copper.xml to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/.: 100%|██████████| 5.00k/5.00k [00:00<00:00, 13.4MB/s]

Uploading example_06_Mat_Steel.xml to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/.:   0%|          | 0.00/5.00k [00:00<?, ?B/s]
Uploading example_06_Mat_Steel.xml to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/.: 100%|██████████| 5.00k/5.00k [00:00<00:00, 24.3MB/s]

'example_06_Mat_Steel.xml'

Build the path relative to project directory and verify

base_name = os.path.basename(mat_cop_path)
combined_path = os.path.join(project_directory, base_name)
mat_Copper_file_path = combined_path.replace("\\", "\\\\")
mechanical.run_python_script(f"mat_Copper_file_path='{mat_Copper_file_path}'")

base_name = os.path.basename(mat_st_path)
combined_path = os.path.join(project_directory, base_name)
mat_Steel_file_path = combined_path.replace("\\", "\\\\")
mechanical.run_python_script(f"mat_Steel_file_path='{mat_Steel_file_path}'")

result = mechanical.run_python_script("mat_Copper_file_path")
print(f"mat_Copper_file_path on server: {result}")
result = mechanical.run_python_script("mat_Steel_file_path")
print(f"mat_Steel_file_path on server: {result}")
mat_Copper_file_path on server: /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/example_06_Mat_Copper.xml
mat_Steel_file_path on server: /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/example_06_Mat_Steel.xml

Run the script#

Run the Mechanical script to attach the geometry and set up and solve the analysis

output = mechanical.run_python_script(
    """
import json
import os

# Read geometry and material information.
geometry_import_group = Model.GeometryImportGroup
geometry_import = geometry_import_group.AddGeometryImport()
geometry_import_format = Ansys.Mechanical.DataModel.Enums.GeometryImportPreference.\
    Format.Automatic
geometry_import_preferences = Ansys.ACT.Mechanical.Utilities.GeometryImportPreferences()
geometry_import_preferences.ProcessNamedSelections = True
geometry_import_preferences.ProcessCoordinateSystems = True
geometry_import.Import(part_file_path,geometry_import_format,geometry_import_preferences)

# Import materials.
MAT = ExtAPI.DataModel.Project.Model.Materials
MAT.Import(mat_Copper_file_path)
MAT.Import(mat_Steel_file_path)

Model.AddStaticStructuralAnalysis()
STAT_STRUC = Model.Analyses[0]
STAT_STRUC_SOLN = STAT_STRUC.Solution
STAT_STRUC_ANA_SETTING = STAT_STRUC.Children[0]

# Set up the unit system.
ExtAPI.Application.ActiveUnitSystem = MechanicalUnitSystem.StandardNMM

# Store all main tree nodes as variables.
MODEL = ExtAPI.DataModel.Project.Model
GEOM = ExtAPI.DataModel.Project.Model.Geometry
CONN_GRP = ExtAPI.DataModel.Project.Model.Connections
CS_GRP = ExtAPI.DataModel.Project.Model.CoordinateSystems
MSH = ExtAPI.DataModel.Project.Model.Mesh
NS_GRP = ExtAPI.DataModel.Project.Model.NamedSelections

# Store name selection.
block3_block2_cont_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block3_block2_cont'][0]
block3_block2_targ_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block3_block2_targ'][0]
shank_block3_targ_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_block3_targ'][0]
shank_block3_cont_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_block3_cont'][0]
block1_washer_cont_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block1_washer_cont'][0]
block1_washer_targ_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block1_washer_targ'][0]
washer_bolt_cont_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'washer_bolt_cont'][0]
washer_bolt_targ_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'washer_bolt_targ'][0]
shank_bolt_targ_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_bolt_targ'][0]
shank_bolt_cont_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_bolt_cont'][0]
block2_block1_cont_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block2_block1_cont'][0]
block2_block1_targ_NS = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block2_block1_targ'][0]
all_bodies = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'all_bodies'][0]
bodies_5 = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'bodies_5'][0]
shank = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank'][0]
shank_face = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_face'][0]
shank_face2 = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_face2'][0]
bottom_surface = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'bottom_surface'][0]
block2_surface = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'block2_surface'][0]
shank_surface = [x for x in ExtAPI.DataModel.Tree.AllObjects
if x.Name == 'shank_surface'][0]

# Assign material to bodies.
SURFACE1=GEOM.Children[0].Children[0]
SURFACE1.Material="Steel"

SURFACE2=GEOM.Children[1].Children[0]
SURFACE2.Material="Copper"

SURFACE3=GEOM.Children[2].Children[0]
SURFACE3.Material="Copper"

SURFACE4=GEOM.Children[3].Children[0]
SURFACE4.Material="Steel"

SURFACE5=GEOM.Children[4].Children[0]
SURFACE5.Material="Steel"

SURFACE6=GEOM.Children[5].Children[0]
SURFACE6.Material="Steel"

# Define coordinate system.
coordinate_systems_17 = Model.CoordinateSystems
coordinate_system_93 = coordinate_systems_17.AddCoordinateSystem()
coordinate_system_93.OriginDefineBy = CoordinateSystemAlignmentType.Fixed
coordinate_system_93.OriginX = Quantity(-195, "mm")
coordinate_system_93.OriginY = Quantity(100, "mm")
coordinate_system_93.OriginZ = Quantity(50, "mm")
coordinate_system_93.PrimaryAxis = CoordinateSystemAxisType.PositiveZAxis

# Change contact settings and add a command snippet to use the Archard Wear Model.
connections =  ExtAPI.DataModel.Project.Model.Connections

# Delete existing contacts.
for connection in connections.Children:
    if connection.DataModelObjectCategory==DataModelObjectCategory.ConnectionGroup:
        connection.Delete()

CONT_REG1 = CONN_GRP.AddContactRegion()
CONT_REG1.SourceLocation = NS_GRP.Children[0]
CONT_REG1.TargetLocation = NS_GRP.Children[1]
CONT_REG1.ContactType=ContactType.Frictional
CONT_REG1.FrictionCoefficient = 0.2
CONT_REG1.SmallSliding = ContactSmallSlidingType.Off
CONT_REG1.UpdateStiffness = UpdateContactStiffness.Never
CMD1=CONT_REG1.AddCommandSnippet()

# Add missing contact keyopt and Archard Wear Model in workbench using a command snippet.
AWM = '''keyopt,cid,9,5
rmodif,cid,10,0.00
rmodif,cid,23,0.001'''
CMD1.AppendText(AWM)

CONTS = CONN_GRP.Children[0]
CONT_REG2 = CONTS.AddContactRegion()
CONT_REG2.SourceLocation = NS_GRP.Children[3]
CONT_REG2.TargetLocation = NS_GRP.Children[2]
CONT_REG2.ContactType=ContactType.Bonded
CONT_REG2.ContactFormulation = ContactFormulation.MPC

CONT_REG3 = CONTS.AddContactRegion()
CONT_REG3.SourceLocation = NS_GRP.Children[4]
CONT_REG3.TargetLocation = NS_GRP.Children[5]
CONT_REG3.ContactType=ContactType.Frictional
CONT_REG3.FrictionCoefficient = 0.2
CONT_REG3.SmallSliding = ContactSmallSlidingType.Off
CONT_REG3.UpdateStiffness = UpdateContactStiffness.Never
CMD3=CONT_REG3.AddCommandSnippet()

# Add missing contact keyopt and Archard Wear Model in workbench using a command snippet.
AWM3 = '''keyopt,cid,9,5
rmodif,cid,10,0.00
rmodif,cid,23,0.001'''
CMD3.AppendText(AWM3)

CONT_REG4 = CONTS.AddContactRegion()
CONT_REG4.SourceLocation = NS_GRP.Children[6]
CONT_REG4.TargetLocation = NS_GRP.Children[7]
CONT_REG4.ContactType=ContactType.Bonded
CONT_REG4.ContactFormulation = ContactFormulation.MPC

CONT_REG5 = CONTS.AddContactRegion()
CONT_REG5.SourceLocation = NS_GRP.Children[9]
CONT_REG5.TargetLocation = NS_GRP.Children[8]
CONT_REG5.ContactType=ContactType.Bonded
CONT_REG5.ContactFormulation = ContactFormulation.MPC

CONT_REG6 = CONTS.AddContactRegion()
CONT_REG6.SourceLocation = NS_GRP.Children[10]
CONT_REG6.TargetLocation = NS_GRP.Children[11]
CONT_REG6.ContactType=ContactType.Frictional
CONT_REG6.FrictionCoefficient = 0.2
CONT_REG6.SmallSliding = ContactSmallSlidingType.Off
CONT_REG6.UpdateStiffness = UpdateContactStiffness.Never
CMD6=CONT_REG6.AddCommandSnippet()
# Add missing contact keyopt and Archard Wear Model in workbench using a command snippet.
AWM6 = '''keyopt,cid,9,5
rmodif,cid,10,0.00
rmodif,cid,23,0.001'''
CMD6.AppendText(AWM6)

# Add contact tool.
#CONT_TOOL = CONN_GRP.AddContactTool()
#CONT_TOOL.AddPenetration()
#CONT_TOOL.AddStatus()
#CONT_TOOL.GenerateInitialContactResults()

# Generate mesh.

Hex_Method = MSH.AddAutomaticMethod()
Hex_Method.Location = all_bodies
Hex_Method.Method = MethodType.HexDominant

BODY_SIZING1=MSH.AddSizing()
BODY_SIZING1.Location=bodies_5
BODY_SIZING1.ElementSize = Quantity(15, "mm")

BODY_SIZING2=MSH.AddSizing()
BODY_SIZING2.Location=shank
BODY_SIZING2.ElementSize = Quantity(7, "mm")

Face_Meshing = MSH.AddFaceMeshing()
Face_Meshing.Location = shank_face
Face_Meshing.MappedMesh = False

Sweep_Method = MSH.AddAutomaticMethod()
Sweep_Method.Location = shank
Sweep_Method.Method = MethodType.Sweep
Sweep_Method.SourceTargetSelection = 2
Sweep_Method.SourceLocation = shank_face
Sweep_Method.TargetLocation = shank_face2

MSH.GenerateMesh()

# Set up analysis settings.
STAT_STRUC_ANA_SETTING.NumberOfSteps = 4
step_index_list = [1]
with Transaction():
    for step_index in step_index_list:
        STAT_STRUC_ANA_SETTING.SetAutomaticTimeStepping(step_index, AutomaticTimeStepping.Off)
STAT_STRUC_ANA_SETTING.Activate()
step_index_list = [1]
with Transaction():
    for step_index in step_index_list:
        STAT_STRUC_ANA_SETTING.SetNumberOfSubSteps(step_index, 2)
STAT_STRUC_ANA_SETTING.Activate()
STAT_STRUC_ANA_SETTING.SolverType = SolverType.Direct
STAT_STRUC_ANA_SETTING.SolverPivotChecking = SolverPivotChecking.Off


# Insert loading and BC.
FIX_SUP=STAT_STRUC.AddFixedSupport()
FIX_SUP.Location=block2_surface

Tabular_Force = STAT_STRUC.AddForce()
Tabular_Force.Location = bottom_surface
Tabular_Force.DefineBy = LoadDefineBy.Components
Tabular_Force.XComponent.Inputs[0].DiscreteValues = [Quantity('0[s]'),Quantity('1[s]'), \
    Quantity('2[s]'),Quantity('3[s]'),Quantity('4[s]')]
Tabular_Force.XComponent.Output.DiscreteValues = [Quantity('0[N]'),Quantity('0[N]'), \
    Quantity('5.e+005[N]'),Quantity('0[N]'),Quantity('-5.e+005[N]')]

Bolt_Pretension = STAT_STRUC.AddBoltPretension()
Bolt_Pretension.Location = shank_surface
Bolt_Pretension.Preload.Inputs[0].DiscreteValues = [Quantity('1[s]'),Quantity('2[s]'), \
    Quantity('3[s]'),Quantity('4[s]')]
Bolt_Pretension.Preload.Output.DiscreteValues = [Quantity('6.1363e+005[N]'), \
    Quantity('0 [N]'),Quantity('0 [N]'),Quantity('0[N]')]
Bolt_Pretension.SetDefineBy(2,BoltLoadDefineBy.Lock)
Bolt_Pretension.SetDefineBy(3,BoltLoadDefineBy.Lock)
Bolt_Pretension.SetDefineBy(4,BoltLoadDefineBy.Lock)

# Insert results.
Post_Contact_Tool = STAT_STRUC_SOLN.AddContactTool()
Post_Contact_Tool.ScopingMethod = GeometryDefineByType.Worksheet

Bolt_Tool = STAT_STRUC_SOLN.AddBoltTool()
Bolt_Working_Load = Bolt_Tool.AddWorkingLoad()

Total_Deformation = STAT_STRUC_SOLN.AddTotalDeformation()
Equivalent_stress_1 = STAT_STRUC_SOLN.AddEquivalentStress()
Equivalent_stress_2 = STAT_STRUC_SOLN.AddEquivalentStress()
Equivalent_stress_2.Location = shank
Force_Reaction_1 = STAT_STRUC_SOLN.AddForceReaction()
Force_Reaction_1.BoundaryConditionSelection = FIX_SUP
Moment_Reaction_2 = STAT_STRUC_SOLN.AddMomentReaction()
Moment_Reaction_2.BoundaryConditionSelection = FIX_SUP

# Set number of processors to 6 using DANSYS. (Optional)
# Num_Cores = STAT_STRUC.SolveConfiguration.SolveProcessSettings.MaxNumberOfCores
# STAT_STRUC.SolveConfiguration.SolveProcessSettings.MaxNumberOfCores = 6

# Solve and validate the results.
STAT_STRUC_SOLN.Solve(True)
STAT_STRUC_SS=STAT_STRUC_SOLN.Status

# Set the isometric view and zoom to fit.
cam = Graphics.Camera
cam.SetSpecificViewOrientation(ViewOrientationType.Iso)
cam.SetFit()

mechdir = STAT_STRUC.Children[0].SolverFilesDirectory
export_path = os.path.join(mechdir, "contact_status.png")
Post_Contact_Tool.Children[0].Activate()
Graphics.ExportImage(export_path, GraphicsImageExportFormat.PNG)

my_results_details = {
    "Total_Deformation": str(Total_Deformation.Maximum),
    "Equivalent_Stress1": str(Equivalent_stress_1.Maximum),
    "Equivalent_Stress2": str(Equivalent_stress_2.Maximum),
}

json.dumps(my_results_details)
"""
)
print(output)
{"Equivalent_Stress1": "2326.1349904740264 [MPa]", "Total_Deformation": "0.39076137299309732 [mm]", "Equivalent_Stress2": "2326.1349904740264 [MPa]"}

Initialize the variable needed for the image directory#

Set the image_dir variable for later use. Make the variable compatible for Windows, Linux, and Docker containers.

# image_directory_modified = project_directory.replace("\\", "\\\\")
mechanical.run_python_script(f"image_dir=ExtAPI.DataModel.AnalysisList[0].WorkingDir")


# Verify the path for image directory.
result_image_dir_server = mechanical.run_python_script(f"image_dir")
print(f"Images are stored on the server at: {result_image_dir_server}")
Images are stored on the server at: /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/

Download the image and plot#

Download one image file from the server to the current working directory and plot using matplotlib.

def get_image_path(image_name):
    return os.path.join(result_image_dir_server, image_name)


def display_image(path):
    print(f"Printing {path} using matplotlib")
    image1 = mpimg.imread(path)
    plt.figure(figsize=(15, 15))
    plt.axis("off")
    plt.imshow(image1)
    plt.show()


image_name = "contact_status.png"
image_path_server = get_image_path(image_name)

if image_path_server != "":
    current_working_directory = os.getcwd()

    local_file_path_list = mechanical.download(
        image_path_server, target_dir=current_working_directory
    )
    image_local_path = local_file_path_list[0]
    print(f"Local image path : {image_local_path}")

    display_image(image_local_path)
example 06 bolt pretension
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/contact_status.png to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/basic/contact_status.png:   0%|          | 0.00/77.5k [00:00<?, ?B/s]
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/contact_status.png to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/basic/contact_status.png: 100%|██████████| 77.5k/77.5k [00:00<00:00, 360MB/s]
Local image path : /home/runner/work/pymechanical-examples/pymechanical-examples/examples/basic/contact_status.png
Printing /home/runner/work/pymechanical-examples/pymechanical-examples/examples/basic/contact_status.png using matplotlib

Download output file from solve and print contents#

Download the solve.out file from the server to the current working directory and print the contents. Remove the solve.out file.

def get_solve_out_path(mechanical):
    """Get the solve out path and return."""
    solve_out_path = ""
    for file_path in mechanical.list_files():
        if file_path.find("solve.out") != -1:
            solve_out_path = file_path
            break

    return solve_out_path


def write_file_contents_to_console(path):
    """Write file contents to console."""
    with open(path, "rt") as file:
        for line in file:
            print(line, end="")


solve_out_path = get_solve_out_path(mechanical)

if solve_out_path != "":
    current_working_directory = os.getcwd()

    mechanical.download(solve_out_path, target_dir=current_working_directory)
    solve_out_local_path = os.path.join(current_working_directory, "solve.out")

    write_file_contents_to_console(solve_out_local_path)

    os.remove(solve_out_local_path)
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/solve.out to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/basic/solve.out:   0%|          | 0.00/80.3k [00:00<?, ?B/s]
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/solve.out to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/basic/solve.out: 100%|██████████| 80.3k/80.3k [00:00<00:00, 417MB/s]

 Ansys Mechanical Enterprise


 *------------------------------------------------------------------*
 |                                                                  |
 |   W E L C O M E   T O   T H E   A N S Y S (R)  P R O G R A M     |
 |                                                                  |
 *------------------------------------------------------------------*




 ***************************************************************
 *         ANSYS MAPDL 2024 R1          LEGAL NOTICES          *
 ***************************************************************
 *                                                             *
 * Copyright 1971-2024 Ansys, Inc.  All rights reserved.       *
 * Unauthorized use, distribution or duplication is            *
 * prohibited.                                                 *
 *                                                             *
 * Ansys is a registered trademark of Ansys, Inc. or its       *
 * subsidiaries in the United States or other countries.       *
 * See the Ansys, Inc. online documentation or the Ansys, Inc. *
 * documentation CD or online help for the complete Legal      *
 * Notice.                                                     *
 *                                                             *
 ***************************************************************
 *                                                             *
 * THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION       *
 * INCLUDE TRADE SECRETS AND CONFIDENTIAL AND PROPRIETARY      *
 * PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS.    *
 * The software products and documentation are furnished by    *
 * Ansys, Inc. or its subsidiaries under a software license    *
 * agreement that contains provisions concerning               *
 * non-disclosure, copying, length and nature of use,          *
 * compliance with exporting laws, warranties, disclaimers,    *
 * limitations of liability, and remedies, and other           *
 * provisions.  The software products and documentation may be *
 * used, disclosed, transferred, or copied only in accordance  *
 * with the terms and conditions of that software license      *
 * agreement.                                                  *
 *                                                             *
 * Ansys, Inc. is a UL registered                              *
 * ISO 9001:2015 company.                                      *
 *                                                             *
 ***************************************************************
 *                                                             *
 * This product is subject to U.S. laws governing export and   *
 * re-export.                                                  *
 *                                                             *
 * For U.S. Government users, except as specifically granted   *
 * by the Ansys, Inc. software license agreement, the use,     *
 * duplication, or disclosure by the United States Government  *
 * is subject to restrictions stated in the Ansys, Inc.        *
 * software license agreement and FAR 12.212 (for non-DOD      *
 * licenses).                                                  *
 *                                                             *
 ***************************************************************

 2024 R1

 Point Releases and Patches installed:

 Ansys, Inc. License Manager 2024 R1
 Structures 2024 R1
 LS-DYNA 2024 R1
 Mechanical Products 2024 R1


          *****  MAPDL COMMAND LINE ARGUMENTS  *****
  BATCH MODE REQUESTED (-b)    = NOLIST
  INPUT FILE COPY MODE (-c)    = COPY
  DISTRIBUTED MEMORY PARALLEL REQUESTED
       4 PARALLEL PROCESSES REQUESTED WITH SINGLE THREAD PER PROCESS
    TOTAL OF     4 CORES REQUESTED
  INPUT FILE NAME              = /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/dummy.dat
  OUTPUT FILE NAME             = /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/solve.out
  START-UP FILE MODE           = NOREAD
  STOP FILE MODE               = NOREAD

 RELEASE= 2024 R1              BUILD= 24.1      UP20231106   VERSION=LINUX x64
 CURRENT JOBNAME=file0  08:54:22  MAY 06, 2024 CP=      0.231


 PARAMETER _DS_PROGRESS =     999.0000000

 /INPUT FILE= ds.dat  LINE=       0



 *** NOTE ***                            CP =       0.295   TIME= 08:54:22
 The /CONFIG,NOELDB command is not valid in a distributed memory
 parallel solution.  Command is ignored.

 *GET  _WALLSTRT  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.90611111

 TITLE=
 --Static Structural

  ACT Extensions:
      LSDYNA, 2024.1
      5f463412-bd3e-484b-87e7-cbc0a665e474, wbex


 SET PARAMETER DIMENSIONS ON  _WB_PROJECTSCRATCH_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_PROJECTSCRATCH_DIR(1) = /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/

 SET PARAMETER DIMENSIONS ON  _WB_SOLVERFILES_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_SOLVERFILES_DIR(1) = /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/

 SET PARAMETER DIMENSIONS ON  _WB_USERFILES_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_USERFILES_DIR(1) = /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/UserFiles/
 --- Data in consistent NMM units. See Solving Units in the help system for more

 MPA UNITS SPECIFIED FOR INTERNAL
  LENGTH      = MILLIMETERS (mm)
  MASS        = TONNE (Mg)
  TIME        = SECONDS (sec)
  TEMPERATURE = CELSIUS (C)
  TOFFSET     = 273.0
  FORCE       = NEWTON (N)
  HEAT        = MILLIJOULES (mJ)

 INPUT  UNITS ARE ALSO SET TO MPA

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:54:22  MAY 06, 2024 CP=      0.299

 --Static Structural



          ***** MAPDL ANALYSIS DEFINITION (PREP7) *****
 *********** Nodes for the whole assembly ***********
 *********** Nodes for all Remote Points ***********
 *********** Elements for Body 1 "Solid" ***********
 *********** Elements for Body 3 "Solid" ***********
 *********** Elements for Body 5 "Solid" ***********
 *********** Elements for Body 7 "Solid" ***********
 *********** Elements for Body 9 "Solid" ***********
 *********** Elements for Body 11 "Solid" ***********
 *********** Send User Defined Coordinate System(s) ***********
 *********** Set Reference Temperature ***********
 *********** Send Materials ***********
 *********** Create Contact "Contact Region" ***********
             Real Constant Set For Above Contact Is 13 & 12
 *********** Create Contact "Contact Region 2" ***********
             Real Constant Set For Above Contact Is 15 & 14
 *********** Create Contact "Contact Region 3" ***********
             Real Constant Set For Above Contact Is 17 & 16
 *********** Create Contact "Contact Region 4" ***********
             Real Constant Set For Above Contact Is 19 & 18
 *********** Create Contact "Contact Region 5" ***********
             Real Constant Set For Above Contact Is 21 & 20
 *********** Create Contact "Contact Region 6" ***********
             Real Constant Set For Above Contact Is 23 & 22
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Element Component ***********
 *********** Send Named Selection as Element Component ***********
 *********** Send Named Selection as Element Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Fixed Supports ***********
 *********** Define Force Using Surface Effect Elements ***********
 *********** Create Bolt Pretension "Bolt Pretension" ***********
  CREATE COMPONENT CMEBOLT  FROM PRETENSION ELEMENTS
  CREATE COMPONENT CMNBOLT  FROM PRETENSION NODES


 ***** ROUTINE COMPLETED *****  CP =         0.905


 --- Number of total nodes = 20274
 --- Number of contact elements = 4624
 --- Number of spring elements = 0
 --- Number of bearing elements = 0
 --- Number of solid elements = 4378
 --- Number of condensed parts = 0
 --- Number of total elements = 9132

 *GET  _WALLBSOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.90611111
 ****************************************************************************
 *************************    SOLUTION       ********************************
 ****************************************************************************

 *****  MAPDL SOLUTION ROUTINE  *****


 PERFORM A STATIC ANALYSIS
  THIS WILL BE A NEW ANALYSIS

 EQUATION PIVOT CHECKING LOGIC WILL BE DISABLED

 PRINT EQUATION PIVOT INFO ONCE PER LOADSTEP

 PARAMETER _THICKRATIO =    0.6670000000

 USE SPARSE MATRIX DIRECT SOLVER

 CONTACT INFORMATION PRINTOUT LEVEL       1

 CHECK INITIAL OPEN/CLOSED STATUS OF SELECTED CONTACT ELEMENTS
      AND LIST DETAILED CONTACT PAIR INFORMATION

 SPLIT CONTACT SURFACES AT SOLVE PHASE

    NUMBER OF SPLITTING TBD BY PROGRAM

 DO NOT COMBINE ELEMENT MATRIX FILES (.emat) AFTER DISTRIBUTED PARALLEL SOLUTION

 DO NOT COMBINE ELEMENT SAVE DATA FILES (.esav) AFTER DISTRIBUTED PARALLEL SOLUTION

 NLDIAG: Nonlinear diagnostics CONT option is set to ON.
         Writing frequency : each ITERATION.

 DEFINE RESTART CONTROL FOR LOADSTEP LAST
 AT FREQUENCY OF LAST AND NUMBER FOR OVERWRITE IS   -1

 DELETE RESTART FILES OF ENDSTEP
 ****************************************************
 ******************* SOLVE FOR LS 1 OF 4 ****************

 SELECT       FOR ITEM=TYPE COMPONENT=
  IN RANGE        24 TO         24 STEP          1

         98  ELEMENTS (OF       9132  DEFINED) SELECTED BY  ESEL  COMMAND.

 SELECT      ALL NODES HAVING ANY ELEMENT IN ELEMENT SET.

        337 NODES (OF      20274  DEFINED) SELECTED FROM
       98 SELECTED ELEMENTS BY NSLE COMMAND.

 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  1   KVAL = 1
      SET ACCORDING TO TABLE PARAMETER = _LOADVARI153X

 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  2   KVAL = 1
     VALUES =     0.0000         0.0000         0.0000         0.0000

 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  3   KVAL = 1
     VALUES =     0.0000         0.0000         0.0000         0.0000

 ALL SELECT   FOR ITEM=NODE COMPONENT=
  IN RANGE         1 TO      20274 STEP          1

      20274  NODES (OF      20274  DEFINED) SELECTED BY NSEL  COMMAND.

 ALL SELECT   FOR ITEM=ELEM COMPONENT=
  IN RANGE         1 TO      11783 STEP          1

       9132  ELEMENTS (OF       9132  DEFINED) SELECTED BY  ESEL  COMMAND.

 PRINTOUT RESUMED BY /GOP

 SPECIFIED NODAL LOAD FX   FOR SELECTED NODES     20144 TO    20144 BY        1
  REAL=  613630.000       IMAG=  0.00000000

 DO NOT USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE       2 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE      2 SUBSTEPS AS A MAXIMUM
   USE      2 SUBSTEPS AS A MINIMUM

 TIME=  1.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE ETMP ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 *GET  ANSINTER_  FROM  ACTI  ITEM=INT        VALUE=  0.00000000

 *IF  ANSINTER_                         ( =   0.00000     )  NE
      0                                 ( =   0.00000     )  THEN

 *ENDIF

 *** NOTE ***                            CP =       1.153   TIME= 08:54:22
 The automatic domain decomposition logic has selected the MESH domain
 decomposition method with 4 processes per solution.

 *****  MAPDL SOLVE    COMMAND  *****

 *** WARNING ***                         CP =       1.207   TIME= 08:54:23
 Element shape checking is currently inactive.  Issue SHPP,ON or
 SHPP,WARN to reactivate, if desired.

 *** NOTE ***                            CP =       1.278   TIME= 08:54:23
 The model data was checked and warning messages were found.
  Please review output or errors file (
 /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/fil
 le0.err ) for these warning messages.

 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS ***
      --- GIVE SUGGESTIONS AND RESET THE KEY OPTIONS ---

 ELEMENT TYPE         1 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS NEEDED.

 ELEMENT TYPE         2 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET.
  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0

 ELEMENT TYPE         3 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS NEEDED.

 ELEMENT TYPE         4 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET.
  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0

 ELEMENT TYPE         5 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS NEEDED.

 ELEMENT TYPE         6 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET.
  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0

 ELEMENT TYPE         7 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS NEEDED.

 ELEMENT TYPE         8 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET.
  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0

 ELEMENT TYPE         9 IS SOLID187. IT IS NOT ASSOCIATED WITH FULLY INCOMPRESSIBLE
 HYPERELASTIC MATERIALS. NO SUGGESTION IS AVAILABLE AND NO RESETTING IS NEEDED.

 ELEMENT TYPE        10 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET.
  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0

 ELEMENT TYPE        11 IS SOLID186. KEYOPT(2)=0 IS SUGGESTED AND HAS BEEN RESET.
  KEYOPT(1-12)=    0    0    0    0    0    0    0    0    0    0    0    0



 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:54:23  MAY 06, 2024 CP=      1.294

 --Static Structural



                       S O L U T I O N   O P T I O N S

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D
   DEGREES OF FREEDOM. . . . . . UX   UY   UZ
   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)
   OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . .  273.15
   EQUATION SOLVER OPTION. . . . . . . . . . . . .SPARSE
   NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN
   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC

 *** WARNING ***                         CP =       1.391   TIME= 08:54:23
 Material number 24 (used by element 11556) should normally have at
 least one MP or one TB type command associated with it.  Output of
 energy by material may not be available.

 *** NOTE ***                            CP =       1.404   TIME= 08:54:23
 The step data was checked and warning messages were found.
  Please review output or errors file (
 /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/fil
 le0.err ) for these warning messages.

 *** NOTE ***                            CP =       1.404   TIME= 08:54:23
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 CHECK INITIAL OPEN/CLOSED STATUS OF SELECTED CONTACT ELEMENTS
      AND LIST DETAILED CONTACT PAIR INFORMATION
 *WARNING*: Some MPC/Lagrange based elements (e.g.7510) in real constant
 set 15 overlap with other MPC/Lagrange based elements (e.g.9500) in
 real constant set 21 which can cause overconstraint.

 *** WARNING ***                         CP =       3.162   TIME= 08:54:24
 Overconstraint may occur for Lagrange multiplier or MPC based contact
 algorithm.

 *** WARNING ***                         CP =       3.162   TIME= 08:54:24
 Certain contact elements (for example 9491 & 9428) overlap with other.

    1970 CONTACT ELEMENTS &     293 TARGET ELEMENTS ARE UNSELECTED FOR PREPARATION OF          SPLITTING.
       6 CONTACT PAIRS ARE UNSELECTED.

 *** NOTE ***                            CP =       3.208   TIME= 08:54:24
 The maximum number of contact elements in any single contact pair is
 100, which is smaller than the optimal domain size of 441 elements for
 the given number of CPU domains (4).  Therefore, no contact pairs are
 being split by the CNCH,DMP logic.

 BECAUSE SPLIT WAS NOT DONE FOR CONNECT REGION(S), UNSELECTED ELEMENTS ARE REVERTED (SELECTED).
 *WARNING*: Some MPC/Lagrange based elements (e.g.7510) in real constant
 set 15 overlap with other MPC/Lagrange based elements (e.g.9500) in
 real constant set 21 which can cause overconstraint.

 *** NOTE ***                            CP =       4.885   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 12 and contact element type 12 has been set up.  The
 companion pair has real constant set ID 13.  Both pairs should have
 the same behavior.
 *WARNING*: The contact pairs have similar mesh patterns which can cause
 overconstraint.  MAPDL will deactivate the current pair and keep its
 companion pair.
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness      0.18596E+06
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance           1.3444
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000

 *** WARNING ***                         CP =       4.885   TIME= 08:54:25
 It is highly recommended to set KEYOPT(10)=0 (update contact stiffness
 at each iteration) in order to achieve better convergence.
 Use constant contact stiffness
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                14.016
 Average contact pair depth                    13.444
 Average target surface length                 13.943
 Default pinball region factor PINB            1.0000
 The resulting pinball region                  13.444
 Contact offset is included. Initial geometric penetration is excluded.

 *** NOTE ***                            CP =       4.885   TIME= 08:54:25
 Max.  Initial penetration 0 was detected between contact element 7130
 and target element 7331.
 ****************************************


 *** NOTE ***                            CP =       4.885   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 13 and contact element type 12 has been set up.  The
 companion pair has real constant set ID 12.  Both pairs should have
 the same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness      0.18596E+06
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance           1.3981
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 *WARNING*: It is highly recommended to set KEYOPT(10)=0 (update contact
 stiffness at each iteration) in order to achieve better convergence.
 Use constant contact stiffness
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                14.007
 Average contact pair depth                    13.981
 Average target surface length                 13.942
 Default pinball region factor PINB            1.0000
 The resulting pinball region                  13.981
 Contact offset is included. Initial geometric penetration is excluded.

 *** NOTE ***                            CP =       4.885   TIME= 08:54:25
 Max.  Initial penetration 0 was detected between contact element 7230
 and target element 7032.
 ****************************************


 *** NOTE ***                            CP =       4.885   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 14 and contact element type 14 has been set up.  The
 companion pair has real constant set ID 15.  Both pairs should have
 the same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Auto surface constraint is built
 Contact algorithm: MPC based approach

 *** NOTE ***                            CP =       4.885   TIME= 08:54:25
 Contact related postprocess items (ETABLE, pressure ...) are not
 available.
 Contact detection at: nodal point (normal to target surface)
 MPC will be built internally to handle bonded contact.
 Average contact surface length                13.531
 Average contact pair depth                    9.6781
 Average target surface length                 6.3865
 Default pinball region factor PINB           0.25000
 The resulting pinball region                  2.4195
 Default target edge extension factor TOLS     2.0000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Max.  Initial penetration 0.684961413 was detected between contact
 element 7496 and target element 9027.
 You may move entire target surface by : x= 2.628064484E-15, y=
 -0.262123383, z= -0.632821831,to reduce initial penetration.
 ****************************************


 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 15 and contact element type 14 has been set up.  The
 companion pair has real constant set ID 14.  Both pairs should have
 the same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Auto surface constraint is built
 Contact algorithm: MPC based approach

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Contact related postprocess items (ETABLE, pressure ...) are not
 available.
 Contact detection at: nodal point (normal to target surface)
 MPC will be built internally to handle bonded contact.
 Average contact surface length                6.4480
 Average contact pair depth                    5.1166
 Average target surface length                 13.388
 Default pinball region factor PINB           0.25000
 The resulting pinball region                  1.2792
 Default target edge extension factor TOLS     2.0000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Max.  Initial penetration 0.67579808 was detected between contact
 element 8291 and target element 7457.
 You may move entire target surface by : x= 3.586288476E-02, y=
 0.632604158, z= 0.235008251,to reduce initial penetration.
 *WARNING*: The geometric gap/penetration may be too large.  Increase
 pinball radius if it is a true geometric gap/penetration.  Decrease
 pinball if it is a false one.
 ****************************************


 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 16 and contact element type 16 has been set up.  The
 companion pair has real constant set ID 17.  Both pairs should have
 the same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness      0.21483E+06
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance           1.2103
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 *WARNING*: It is highly recommended to set KEYOPT(10)=0 (update contact
 stiffness at each iteration) in order to achieve better convergence.
 Use constant contact stiffness
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                14.017
 Average contact pair depth                    12.103
 Average target surface length                 14.123
 Default pinball region factor PINB            1.0000
 The resulting pinball region                  12.103
 Contact offset is included. Initial geometric penetration is excluded.

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Max.  Initial penetration 0 was detected between contact element 9266
 and target element 9392.
 ****************************************


 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 17 and contact element type 16 has been set up.  The
 companion pair has real constant set ID 16.  Both pairs should have
 the same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness      0.21483E+06
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.43721
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 *WARNING*: It is highly recommended to set KEYOPT(10)=0 (update contact
 stiffness at each iteration) in order to achieve better convergence.
 Use constant contact stiffness
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                14.470
 Average contact pair depth                    4.3721
 Average target surface length                 13.943
 Default pinball region factor PINB            1.0000
 The resulting pinball region                  4.3721
 Contact offset is included. Initial geometric penetration is excluded.

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Max.  Initial penetration 0 was detected between contact element 9366
 and target element 9214.
 ****************************************


 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 18 and contact element type 18 has been set up.  The
 companion pair has real constant set ID 19.  Both pairs should have
 the same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Auto surface constraint is built
 Contact algorithm: MPC based approach

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Contact related postprocess items (ETABLE, pressure ...) are not
 available.
 Contact detection at: nodal point (normal to target surface)
 MPC will be built internally to handle bonded contact.
 Average contact surface length                14.350
 Average contact pair depth                    4.3860
 Average target surface length                 12.238
 Default pinball region factor PINB           0.25000
 The resulting pinball region                  1.0965
 Default target edge extension factor TOLS     2.0000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.

 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Max.  Initial penetration 5.684341886E-14 was detected between contact
 element 9408 and target element 9446.
 ****************************************


 *** NOTE ***                            CP =       4.886   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 19 and contact element type 18 has been set up.  The
 companion pair has real constant set ID 18.  Both pairs should have
 the same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Auto surface constraint is built
 Contact algorithm: MPC based approach

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Contact related postprocess items (ETABLE, pressure ...) are not
 available.
 Contact detection at: nodal point (normal to target surface)
 MPC will be built internally to handle bonded contact.
 *WARNING*: Certain contact elements (for example 9436&9488) overlap
 each other.  Overconstraint may occur.
 Average contact surface length                12.576
 Average contact pair depth                    12.199
 Average target surface length                 14.181
 Default pinball region factor PINB           0.25000
 The resulting pinball region                  3.0498
 Default target edge extension factor TOLS     2.0000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Max.  Initial penetration 1.136868377E-13 was detected between contact
 element 9423 and target element 9398.
 ****************************************


 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 20 and contact element type 20 has been set up.  The
 companion pair has real constant set ID 21.  Both pairs should have
 the same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Auto surface constraint is built
 Contact algorithm: MPC based approach

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Contact related postprocess items (ETABLE, pressure ...) are not
 available.
 Contact detection at: nodal point (normal to target surface)
 MPC will be built internally to handle bonded contact.
 *WARNING*: Certain contact elements (for example 9491&9428) overlap
 each other.  Overconstraint may occur.
 Average contact surface length                13.088
 Average contact pair depth                    6.7345
 Average target surface length                 6.3865
 Default pinball region factor PINB           0.25000
 The resulting pinball region                  1.6836
 Default target edge extension factor TOLS     2.0000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Max.  Initial penetration 1.28495889 was detected between contact
 element 9479 and target element 11069.
 You may move entire target surface by : x= 1.224539025E-15, y=
 -1.18655332, z= -0.493163843,to reduce initial penetration.
 *WARNING*: The geometric gap/penetration may be too large.  Increase
 pinball radius if it is a true geometric gap/penetration.  Decrease
 pinball if it is a false one.
 ****************************************


 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 21 and contact element type 20 has been set up.  The
 companion pair has real constant set ID 20.  Both pairs should have
 the same behavior.
 MAPDL will deactivate the current pair and keep its companion pair,
 resulting in asymmetric contact.
 Auto surface constraint is built
 Contact algorithm: MPC based approach

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Contact related postprocess items (ETABLE, pressure ...) are not
 available.
 Contact detection at: nodal point (normal to target surface)
 MPC will be built internally to handle bonded contact.
 Average contact surface length                6.4480
 Average contact pair depth                    5.1166
 Average target surface length                 12.889
 Default pinball region factor PINB           0.25000
 The resulting pinball region                  1.2792
 Default target edge extension factor TOLS     2.0000
 Initial penetration/gap is excluded.
 Bonded contact (always) is defined.

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Max.  Initial penetration 1.2132628 was detected between contact
 element 10241 and target element 9455.
 You may move entire target surface by : x= 2.447930752E-02, y=
 1.1355368, z= 0.426571867,to reduce initial penetration.
 *WARNING*: The geometric gap/penetration may be too large.  Increase
 pinball radius if it is a true geometric gap/penetration.  Decrease
 pinball if it is a false one.
 ****************************************


 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 22 and contact element type 22 has been set up.  The
 companion pair has real constant set ID 23.  Both pairs should have
 the same behavior.
 *WARNING*: The contact pairs have similar mesh patterns which can cause
 overconstraint.  MAPDL will deactivate the current pair and keep its
 companion pair.
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness      0.18035E+06
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance           1.4416
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 *WARNING*: It is highly recommended to set KEYOPT(10)=0 (update contact
 stiffness at each iteration) in order to achieve better convergence.
 Use constant contact stiffness
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                14.016
 Average contact pair depth                    14.416
 Average target surface length                 13.943
 Default pinball region factor PINB            1.0000
 The resulting pinball region                  14.416
 Contact offset is included. Initial geometric penetration is excluded.

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Max.  Initial penetration 0 was detected between contact element 11256
 and target element 11456.
 ****************************************


 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Symmetric Deformable- deformable contact pair identified by real
 constant set 23 and contact element type 22 has been set up.  The
 companion pair has real constant set ID 22.  Both pairs should have
 the same behavior.
 MAPDL will keep the current pair and deactivate its companion pair,
 resulting in asymmetric contact.
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness      0.18035E+06
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance           1.2341
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 *WARNING*: It is highly recommended to set KEYOPT(10)=0 (update contact
 stiffness at each iteration) in order to achieve better convergence.
 Use constant contact stiffness
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                14.007
 Average contact pair depth                    12.341
 Average target surface length                 13.942
 Default pinball region factor PINB            1.0000
 The resulting pinball region                  12.341
 Contact offset is included. Initial geometric penetration is excluded.

 *** NOTE ***                            CP =       4.887   TIME= 08:54:25
 Max.  Initial penetration 0 was detected between contact element 11356
 and target element 11156.
 ****************************************


 *** WARNING ***                         CP =       4.887   TIME= 08:54:25
 Overconstraint may occur for Lagrange multiplier or MPC based contact
 algorithm.
 The reasons for possible overconstraint are:

 *** WARNING ***                         CP =       4.888   TIME= 08:54:25
 Certain contact elements (for example 9491 & 9428) overlap with other.
 ****************************************





     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R

  ...Number of elements: 9132
  ...Number of nodes:    20274
  ...Decompose to 4 CPU domains
  ...Element load balance ratio =     1.673


                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000
   NUMBER OF SUBSTEPS. . . . . . . . . . . . . . .     2
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        ALL
      RSOL        ALL
      EANG        ALL
      ETMP        ALL
      VENG        ALL
      STRS        ALL
      EPEL        ALL
      EPPL        ALL
      CONT        ALL


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr

 >>>> PRETENSION ELEMENT STATUS <<<<
 SECTION NAME     PT.NODE  --------STATUS--------------------  ----LOAD SOURCE----
    25              20144  APPLIED PRELOAD FORCE= 0.61363E+06  F COMMAND
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 26, BY SOLUTION CONTROL LOGIC.


 Range of element maximum matrix coefficients in global coordinates
 Maximum = 96730820.9 at element 848.
 Minimum = 778765.908 at element 1102.

   *** ELEMENT MATRIX FORMULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        74  SOLID187      0.004   0.000059
        2       927  SOLID186      0.106   0.000115
        3       103  SOLID187      0.006   0.000058
        4       988  SOLID186      0.111   0.000112
        5        10  SOLID187      0.001   0.000057
        6       448  SOLID186      0.052   0.000115
        7        13  SOLID187      0.001   0.000063
        8        51  SOLID186      0.006   0.000117
        9         4  SOLID187      0.000   0.000059
       10        58  SOLID186      0.007   0.000126
       11      1702  SOLID186      0.196   0.000115
       12       200  CONTA174      0.041   0.000204
       13       200  TARGE170      0.000   0.000002
       14       868  CONTA174      0.046   0.000053
       15       868  TARGE170      0.002   0.000003
       16       114  CONTA174      0.007   0.000059
       17       114  TARGE170      0.000   0.000002
       18        29  CONTA174      0.006   0.000197
       19        29  TARGE170      0.000   0.000002
       20       852  CONTA174      0.036   0.000042
       21       852  TARGE170      0.002   0.000003
       22       200  CONTA174      0.042   0.000208
       23       200  TARGE170      0.000   0.000002
       24        98  SURF154       0.003   0.000035
       25       130  PRETS179      0.000   0.000003
 Time at end of element matrix formulation CP = 7.18007803.

 ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= file.rdb
  FOR POSSIBLE RESUME FROM THIS POINT
     FORCE CONVERGENCE VALUE  =  0.3068E+06  CRITERION=   1534.

 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER.
  Number of equations =       56329,    Maximum wavefront =    867

  Process memory allocated for solver              =   148.930 MB
  Process memory required for in-core solution     =   143.095 MB
  Process memory required for out-of-core solution =    73.769 MB

  Total memory allocated for solver                =   610.980 MB
  Total memory required for in-core solution       =   586.509 MB
  Total memory required for out-of-core solution   =   283.297 MB

 *** NOTE ***                            CP =       7.615   TIME= 08:54:27
 The Distributed Sparse Matrix Solver is currently running in the
 in-core memory mode.  This memory mode uses the most amount of memory
 in order to avoid using the hard drive as much as possible, which most
 often results in the fastest solution time.  This mode is recommended
 if enough physical memory is present to accommodate all of the solver
 data.
 curEqn=  14959  totEqn=  14959 Job CP sec=      8.034
      Factor Done= 100% Factor Wall sec=      0.492 rate=      18.8 GFlops
 Distributed sparse solver maximum pivot= 107025329 at node 2021 UX.
 Distributed sparse solver minimum pivot= 223327.17 at node 12455 UZ.
 Distributed sparse solver minimum pivot in absolute value= 223327.17 at
 node 12455 UZ.
     DISP CONVERGENCE VALUE   =  0.3442      CRITERION=  0.1721E-01
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3442
     DISP CONVERGENCE VALUE   =  0.3442      CRITERION=  0.1721E-01
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.3442
     FORCE CONVERGENCE VALUE  =  0.2046E+05  CRITERION=   1543.
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5512E-02
     DISP CONVERGENCE VALUE   =  0.5512E-02  CRITERION=  0.1740E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.5512E-02
     FORCE CONVERGENCE VALUE  =  0.1458E+05  CRITERION=   1543.
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3677E-02
     DISP CONVERGENCE VALUE   =  0.3677E-02  CRITERION=  0.1754E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.3677E-02
     FORCE CONVERGENCE VALUE  =   6073.      CRITERION=   1542.
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1615E-02
     DISP CONVERGENCE VALUE   =  0.1615E-02  CRITERION=  0.1759E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1615E-02
     FORCE CONVERGENCE VALUE  =   3550.      CRITERION=   1542.
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1298E-02
     DISP CONVERGENCE VALUE   =  0.1298E-02  CRITERION=  0.1761E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1298E-02
     FORCE CONVERGENCE VALUE  =   3172.      CRITERION=   1542.
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3898E-03
     DISP CONVERGENCE VALUE   =  0.3898E-03  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.3898E-03
     FORCE CONVERGENCE VALUE  =   717.1      CRITERION=   1542.     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   6

   *** ELEMENT RESULT CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        74  SOLID187      0.004   0.000049
        2       927  SOLID186      0.070   0.000075
        3       103  SOLID187      0.005   0.000049
        4       988  SOLID186      0.074   0.000075
        5        10  SOLID187      0.000   0.000048
        6       448  SOLID186      0.034   0.000076
        7        13  SOLID187      0.001   0.000051
        8        51  SOLID186      0.004   0.000073
        9         4  SOLID187      0.000   0.000050
       10        58  SOLID186      0.005   0.000081
       11      1702  SOLID186      0.131   0.000077
       12       200  CONTA174      0.011   0.000057
       14       868  CONTA174      0.015   0.000018
       16       114  CONTA174      0.003   0.000030
       18        29  CONTA174      0.001   0.000020
       20       852  CONTA174      0.015   0.000017
       22       200  CONTA174      0.011   0.000056
       24        98  SURF154       0.002   0.000022

   *** NODAL LOAD CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        74  SOLID187      0.001   0.000015
        2       927  SOLID186      0.014   0.000015
        3       103  SOLID187      0.001   0.000014
        4       988  SOLID186      0.014   0.000014
        5        10  SOLID187      0.000   0.000014
        6       448  SOLID186      0.007   0.000015
        7        13  SOLID187      0.000   0.000015
        8        51  SOLID186      0.001   0.000015
        9         4  SOLID187      0.000   0.000020
       10        58  SOLID186      0.001   0.000018
       11      1702  SOLID186      0.026   0.000015
       12       200  CONTA174      0.002   0.000008
       14       868  CONTA174      0.003   0.000003
       16       114  CONTA174      0.000   0.000004
       18        29  CONTA174      0.000   0.000003
       20       852  CONTA174      0.002   0.000003
       22       200  CONTA174      0.001   0.000007
       24        98  SURF154       0.000   0.000003
 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      6
 *** TIME =  0.500000         TIME INC =  0.500000

     FORCE CONVERGENCE VALUE  =   6358.      CRITERION=   3084.
     DISP CONVERGENCE VALUE   =  0.7403E-03  CRITERION=  0.1762E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.7403E-03
     DISP CONVERGENCE VALUE   =  0.5305E-03  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7166     SCALED MAX DOF INC =  0.5305E-03
     FORCE CONVERGENCE VALUE  =   1653.      CRITERION=   3084.     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP     2  COMPLETED.    CUM ITER =      7
 *** TIME =   1.00000         TIME INC =  0.500000


 *** MAPDL BINARY FILE STATISTICS
  BUFFER SIZE USED= 16384
        0.438 MB WRITTEN ON ELEMENT MATRIX FILE: file0.emat
        7.312 MB WRITTEN ON ELEMENT SAVED DATA FILE: file0.esav
       20.250 MB WRITTEN ON ASSEMBLED MATRIX FILE: file0.full
        2.562 MB WRITTEN ON RESULTS FILE: file0.rst
 *************** Write FE CONNECTORS *********

 WRITE OUT CONSTRAINT EQUATIONS TO FILE= file.ce
 ****************************************************
 *************** FINISHED SOLVE FOR LS 1 *************
 ****************************************************
 ******************* SOLVE FOR LS 2 OF 4 ****************

 PRINTOUT RESUMED BY /GOP

 DELETE ALL SPECIFIED NODAL LOADS FROM NODE     20144 TO     20144 BY       1

 NUMBER OF NODAL LOADS DELETED=       1

 *** WARNING ***                         CP =      16.432   TIME= 08:54:36
 Table _FIX is an MAPDL reserved table name.  It is used to constrain
 structural degrees of freedom to their current displaced status.  This
 table should not be used for other purposes.

 SPECIFIED CONSTRAINT UX   FOR SELECTED NODES        20144 TO       20144 BY           1
 SET ACCORDING TO TABLE PARAMETER = _FIX

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE       1 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE     10 SUBSTEPS AS A MAXIMUM
   USE      1 SUBSTEPS AS A MINIMUM

 TIME=  2.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE ETMP ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 *****  MAPDL SOLVE    COMMAND  *****

 *** WARNING ***                         CP =      16.497   TIME= 08:54:36
 Material number 24 (used by element 11556) should normally have at
 least one MP or one TB type command associated with it.  Output of
 energy by material may not be available.

 *** NOTE ***                            CP =      16.502   TIME= 08:54:36
 The step data was checked and warning messages were found.
  Please review output or errors file (
 /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/fil
 le0.err ) for these warning messages.

 *** NOTE ***                            CP =      16.503   TIME= 08:54:36
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:54:36  MAY 06, 2024 CP=     16.643

 --Static Structural



                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     2
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  2.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .     1
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     1
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        ALL
      RSOL        ALL
      EANG        ALL
      ETMP        ALL
      VENG        ALL
      STRS        ALL
      EPEL        ALL
      EPPL        ALL
      CONT        ALL


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr

 >>>> PRETENSION ELEMENT STATUS <<<<
 SECTION NAME     PT.NODE  --------STATUS--------------------  ----LOAD SOURCE----
    25              20144  FIXED RELATIVE MOTION= 0.70450      D COMMAND
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 26, BY SOLUTION CONTROL LOGIC.

     FORCE CONVERGENCE VALUE  =  0.4900E+05  CRITERION=   3094.
     DISP CONVERGENCE VALUE   =  0.1808E-01  CRITERION=  0.1762E-01
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1808E-01
     DISP CONVERGENCE VALUE   =  0.1798E-01  CRITERION=  0.1762E-01
     LINE SEARCH PARAMETER =  0.9948     SCALED MAX DOF INC =  0.1798E-01
     FORCE CONVERGENCE VALUE  =  0.3035E+05  CRITERION=   3119.
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.7608E-02
     DISP CONVERGENCE VALUE   =  0.7456E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9801     SCALED MAX DOF INC =  0.7456E-02
     FORCE CONVERGENCE VALUE  =  0.2512E+05  CRITERION=   3120.
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1066E-01
     DISP CONVERGENCE VALUE   =  0.1066E-01  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1066E-01
     FORCE CONVERGENCE VALUE  =  0.2337E+05  CRITERION=   3128.
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.6083E-02
     DISP CONVERGENCE VALUE   =  0.6083E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.6083E-02
     FORCE CONVERGENCE VALUE  =  0.1590E+05  CRITERION=   3132.
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4859E-02
     DISP CONVERGENCE VALUE   =  0.4859E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.4859E-02
     FORCE CONVERGENCE VALUE  =  0.1138E+05  CRITERION=   3137.
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2737E-02
     DISP CONVERGENCE VALUE   =  0.2737E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2737E-02
     FORCE CONVERGENCE VALUE  =   7484.      CRITERION=   3141.
    EQUIL ITER   7 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1997E-02
     DISP CONVERGENCE VALUE   =  0.1997E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1997E-02
     FORCE CONVERGENCE VALUE  =   4907.      CRITERION=   3694.
    EQUIL ITER   8 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1720E-02
     DISP CONVERGENCE VALUE   =  0.1720E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1720E-02
     FORCE CONVERGENCE VALUE  =   1902.      CRITERION=   3771.     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   8
 *** LOAD STEP     2   SUBSTEP     1  COMPLETED.    CUM ITER =     15
 *** TIME =   2.00000         TIME INC =   1.00000
 ****************************************************
 *************** FINISHED SOLVE FOR LS 2 *************
 ****************************************************
 ******************* SOLVE FOR LS 3 OF 4 ****************

 PRINTOUT RESUMED BY /GOP

 DELETE ALL SPECIFIED NODAL LOADS FROM NODE     20144 TO     20144 BY       1

 NUMBER OF NODAL LOADS DELETED=       0

 SPECIFIED CONSTRAINT UX   FOR SELECTED NODES        20144 TO       20144 BY           1
 SET ACCORDING TO TABLE PARAMETER = _FIX

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE       1 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE     10 SUBSTEPS AS A MAXIMUM
   USE      1 SUBSTEPS AS A MINIMUM

 TIME=  3.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE ETMP ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 *****  MAPDL SOLVE    COMMAND  *****

 *** WARNING ***                         CP =      27.934   TIME= 08:54:46
 Material number 24 (used by element 11556) should normally have at
 least one MP or one TB type command associated with it.  Output of
 energy by material may not be available.

 *** NOTE ***                            CP =      27.943   TIME= 08:54:46
 The step data was checked and warning messages were found.
  Please review output or errors file (
 /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/fil
 le0.err ) for these warning messages.

 *** NOTE ***                            CP =      27.943   TIME= 08:54:46
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:54:46  MAY 06, 2024 CP=     28.162

 --Static Structural



                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     3
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  3.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .     1
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     1
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        ALL
      RSOL        ALL
      EANG        ALL
      ETMP        ALL
      VENG        ALL
      STRS        ALL
      EPEL        ALL
      EPPL        ALL
      CONT        ALL


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr

 >>>> PRETENSION ELEMENT STATUS <<<<
 SECTION NAME     PT.NODE  --------STATUS--------------------  ----LOAD SOURCE----
    25              20144  FIXED RELATIVE MOTION= 0.70450      D COMMAND
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 26, BY SOLUTION CONTROL LOGIC.

     FORCE CONVERGENCE VALUE  =  0.4901E+05  CRITERION=   3135.
     DISP CONVERGENCE VALUE   =  0.1481      CRITERION=  0.1762E-01
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1481
     DISP CONVERGENCE VALUE   =  0.7403E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.5000E-01 SCALED MAX DOF INC = -0.7403E-02
     FORCE CONVERGENCE VALUE  =  0.1372E+06  CRITERION=   3124.
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.7993E-01
     DISP CONVERGENCE VALUE   =  0.1003E-01  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.1254     SCALED MAX DOF INC = -0.1003E-01
     FORCE CONVERGENCE VALUE  =  0.2065E+06  CRITERION=   3114.
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.5146E-01
     DISP CONVERGENCE VALUE   =  0.8032E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.1561     SCALED MAX DOF INC = -0.8032E-02
     FORCE CONVERGENCE VALUE  =  0.2445E+06  CRITERION=   3105.
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2828E-01
     DISP CONVERGENCE VALUE   =  0.6316E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.2233     SCALED MAX DOF INC = -0.6316E-02
     FORCE CONVERGENCE VALUE  =  0.2676E+06  CRITERION=   3098.
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1374E-01
     DISP CONVERGENCE VALUE   =  0.6175E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.4494     SCALED MAX DOF INC = -0.6175E-02
     FORCE CONVERGENCE VALUE  =  0.2617E+06  CRITERION=   3095.
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.5365E-02
     DISP CONVERGENCE VALUE   =  0.4800E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8947     SCALED MAX DOF INC = -0.4800E-02
     FORCE CONVERGENCE VALUE  =  0.4670E+05  CRITERION=   3081.
    EQUIL ITER   7 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5336E-02
     DISP CONVERGENCE VALUE   =  0.3955E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7412     SCALED MAX DOF INC =  0.3955E-02
     FORCE CONVERGENCE VALUE  =  0.1552E+05  CRITERION=   3619.
    EQUIL ITER   8 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3768E-02
     DISP CONVERGENCE VALUE   =  0.1967E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.5221     SCALED MAX DOF INC = -0.1967E-02
     FORCE CONVERGENCE VALUE  =   7935.      CRITERION=   3692.
    EQUIL ITER   9 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1886E-02
     DISP CONVERGENCE VALUE   =  0.1424E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7548     SCALED MAX DOF INC =  0.1424E-02
     FORCE CONVERGENCE VALUE  =   3351.      CRITERION=   7534.     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   9
 *** LOAD STEP     3   SUBSTEP     1  COMPLETED.    CUM ITER =     24
 *** TIME =   3.00000         TIME INC =   1.00000
 ****************************************************
 *************** FINISHED SOLVE FOR LS 3 *************
 ****************************************************
 ******************* SOLVE FOR LS 4 OF 4 ****************

 PRINTOUT RESUMED BY /GOP

 DELETE ALL SPECIFIED NODAL LOADS FROM NODE     20144 TO     20144 BY       1

 NUMBER OF NODAL LOADS DELETED=       0

 SPECIFIED CONSTRAINT UX   FOR SELECTED NODES        20144 TO       20144 BY           1
 SET ACCORDING TO TABLE PARAMETER = _FIX

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE       1 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE     10 SUBSTEPS AS A MAXIMUM
   USE      1 SUBSTEPS AS A MINIMUM

 TIME=  4.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE ETMP ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL
   FOR ALL APPLICABLE ENTITIES

 *****  MAPDL SOLVE    COMMAND  *****

 *** WARNING ***                         CP =      43.194   TIME= 08:55:01
 Material number 24 (used by element 11556) should normally have at
 least one MP or one TB type command associated with it.  Output of
 energy by material may not be available.

 *** NOTE ***                            CP =      43.204   TIME= 08:55:01
 The step data was checked and warning messages were found.
  Please review output or errors file (
 /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural/fil
 le0.err ) for these warning messages.

 *** NOTE ***                            CP =      43.204   TIME= 08:55:01
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:55:01  MAY 06, 2024 CP=     43.392

 --Static Structural



                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     4
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  4.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .     1
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     1
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        ALL
      RSOL        ALL
      EANG        ALL
      ETMP        ALL
      VENG        ALL
      STRS        ALL
      EPEL        ALL
      EPPL        ALL
      CONT        ALL


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr

 >>>> PRETENSION ELEMENT STATUS <<<<
 SECTION NAME     PT.NODE  --------STATUS--------------------  ----LOAD SOURCE----
    25              20144  FIXED RELATIVE MOTION= 0.70450      D COMMAND
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 26, BY SOLUTION CONTROL LOGIC.

     FORCE CONVERGENCE VALUE  =  0.4913E+05  CRITERION=   3088.
     DISP CONVERGENCE VALUE   =  0.1809E-01  CRITERION=  0.1762E-01
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1809E-01
     DISP CONVERGENCE VALUE   =  0.1780E-01  CRITERION=  0.1762E-01
     LINE SEARCH PARAMETER =  0.9843     SCALED MAX DOF INC = -0.1780E-01
     FORCE CONVERGENCE VALUE  =  0.1270E+05  CRITERION=   3069.
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2356E-02
     DISP CONVERGENCE VALUE   =  0.2001E-02  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8495     SCALED MAX DOF INC = -0.2001E-02
     FORCE CONVERGENCE VALUE  =   3584.      CRITERION=   3071.
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.4602E-03
     DISP CONVERGENCE VALUE   =  0.4602E-03  CRITERION=  0.1762E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.4602E-03
     FORCE CONVERGENCE VALUE  =   1204.      CRITERION=   3071.     <<< CONVERGED
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3
 *** LOAD STEP     4   SUBSTEP     1  COMPLETED.    CUM ITER =     27
 *** TIME =   4.00000         TIME INC =   1.00000
 ****************************************************
 *************** FINISHED SOLVE FOR LS 4 *************

 *GET  _WALLASOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.91805556

 PRINTOUT RESUMED BY /GOP

 FINISH SOLUTION PROCESSING


 ***** ROUTINE COMPLETED *****  CP =        48.494



 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:55:05  MAY 06, 2024 CP=     48.502

 --Static Structural



          ***** MAPDL RESULTS INTERPRETATION (POST1) *****

 *** NOTE ***                            CP =      48.503   TIME= 08:55:05
 Reading results into the database (SET command) will update the current
 displacement and force boundary conditions in the database with the
 values from the results file for that load set.  Note that any
 subsequent solutions will use these values unless action is taken to
 either SAVE the current values or not overwrite them (/EXIT,NOSAVE).

 Set Encoding of XML File to:ISO-8859-1

 Set Output of XML File to:
     PARM,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,
         ,     ,     ,     ,     ,     ,     ,

 DATABASE WRITTEN ON FILE  parm.xml

 EXIT THE MAPDL POST1 DATABASE PROCESSOR


 ***** ROUTINE COMPLETED *****  CP =        48.506



 PRINTOUT RESUMED BY /GOP

 *GET  _WALLDONE  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.91805556

 PARAMETER _PREPTIME =     0.000000000

 PARAMETER _SOLVTIME =     43.00000000

 PARAMETER _POSTTIME =     0.000000000

 PARAMETER _TOTALTIM =     43.00000000

 *GET  _DLBRATIO  FROM  ACTI  ITEM=SOLU DLBR  VALUE=  1.67343486

 *GET  _COMBTIME  FROM  ACTI  ITEM=SOLU COMB  VALUE= 0.656522232E-01

 *GET  _SSMODE   FROM  ACTI  ITEM=SOLU SSMM  VALUE=  2.00000000

 *GET  _NDOFS    FROM  ACTI  ITEM=SOLU NDOF  VALUE=  56328.0000

 *GET  _SOL_END_TIME  FROM  ACTI  ITEM=SET  TIME  VALUE=  4.00000000

 *IF  _sol_end_time                     ( =   4.00000     )  EQ
      4.000000                          ( =   4.00000     )  THEN

 /FCLEAN COMMAND REMOVING ALL LOCAL FILES

 *ENDIF
 --- Total number of nodes = 20274
 --- Total number of elements = 9132
 --- Element load balance ratio = 1.67343486
 --- Time to combine distributed files = 6.565222317E-02
 --- Sparse memory mode = 2
 --- Number of DOF = 56328

 EXIT MAPDL WITHOUT SAVING DATABASE


 NUMBER OF WARNING MESSAGES ENCOUNTERED=         11
 NUMBER OF ERROR   MESSAGES ENCOUNTERED=          0

+--------------------- M A P D L   S T A T I S T I C S ------------------------+

Release: 2024 R1            Build: 24.1       Update: UP20231106   Platform: LINUX x64
Date Run: 05/06/2024   Time: 08:55     Process ID: 4348
Operating System: Ubuntu 20.04.6 LTS

Processor Model: AMD EPYC 7763 64-Core Processor

Compiler: Intel(R) Fortran Compiler Classic Version 2021.9  (Build: 20230302)
          Intel(R) C/C++ Compiler Classic Version 2021.9  (Build: 20230302)
          Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122
          BLAS Library supplied by AMD BLIS

Number of machines requested            :    1
Total number of cores available         :    8
Number of physical cores available      :    4
Number of processes requested           :    4
Number of threads per process requested :    1
Total number of cores requested         :    4 (Distributed Memory Parallel)
MPI Type: INTELMPI
MPI Version: Intel(R) MPI Library 2021.10 for Linux* OS


GPU Acceleration: Not Requested

Job Name: file0
Input File: dummy.dat

  Core                Machine Name   Working Directory
 -----------------------------------------------------
     0                d0781433be37   /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural
     1                d0781433be37   /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural
     2                d0781433be37   /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural
     3                d0781433be37   /tmp/ANSYS.root.1/AnsysMech5D92/Project_Mech_Files/StaticStructural

Latency time from master to core     1 =    2.245 microseconds
Latency time from master to core     2 =    2.187 microseconds
Latency time from master to core     3 =    1.957 microseconds

Communication speed from master to core     1 = 10945.59 MB/sec
Communication speed from master to core     2 = 14974.57 MB/sec
Communication speed from master to core     3 = 16144.27 MB/sec

Total CPU time for main thread                    :       42.9 seconds
Total CPU time summed for all threads             :       49.1 seconds

Elapsed time spent obtaining a license            :        0.3 seconds
Elapsed time spent pre-processing model (/PREP7)  :        0.2 seconds
Elapsed time spent solution - preprocessing       :        2.5 seconds
Elapsed time spent computing solution             :       39.8 seconds
Elapsed time spent solution - postprocessing      :        0.1 seconds
Elapsed time spent post-processing model (/POST1) :        0.0 seconds

Equation solver used                              :            Sparse (symmetric)
Equation solver computational rate                :       88.0 Gflops
Equation solver effective I/O rate                :      126.7 GB/sec

Sum of disk space used on all processes           :      199.3 MB

Sum of memory used on all processes               :      864.0 MB
Sum of memory allocated on all processes          :     3472.0 MB
Physical memory available                         :         31 GB
Total amount of I/O written to disk               :        2.3 GB
Total amount of I/O read from disk                :        8.1 GB

+------------------ E N D   M A P D L   S T A T I S T I C S -------------------+


 *-----------------------------------------------------------------------------*
 |                                                                             |
 |                               RUN COMPLETED                                 |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |  Ansys MAPDL 2024 R1         Build 24.1         UP20231106    LINUX x64     |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |  Database Requested(-db)     1024 MB     Scratch Memory Requested   1024 MB |
 |  Max Database Used(Master)     20 MB     Max Scratch Used(Master)    194 MB |
 |  Max Database Used(Workers)     1 MB     Max Scratch Used(Workers)   261 MB |
 |  Sum Database Used(All)        23 MB     Sum Scratch Used(All)       841 MB |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |        CP Time      (sec) =         49.082       Time  =  08:55:06          |
 |        Elapsed Time (sec) =         45.000       Date  =  05/06/2024        |
 |                                                                             |
 *-----------------------------------------------------------------------------*

Close mechanical#

Close the mechanical instance.

mechanical.exit()

Total running time of the script: (0 minutes 57.994 seconds)

Gallery generated by Sphinx-Gallery