Nonlinear Analysis of a Rubber Boot Seal Model#

This example demonstrates a nonlinear 3D analysis of a rubber boot seal to:

  • Create a rigid-flexible contact pair between a rigid shaft and a rubber boot part.

  • Specify ramped effects using the On Gauss Point Detection Method to update contact stiffness at each iteration.

  • Specify contact pairs at the inner and outer surfaces of the rubber boot.

  • Specify non-ramped effects using the Nodal-Projected Normal From Contact Detection Method to update contact stiffness at each iteration.

Import necessary libraries#

import os

from ansys.mechanical.core import launch_mechanical
from ansys.mechanical.core.examples import download_file
from matplotlib import image as mpimg
from matplotlib import pyplot as plt

Launch mechanical#

Launch a new Mechanical session in batch, setting the cleanup_on_exit argument to False. To close this Mechanical session when finished, this example must call the mechanical.exit() method.

mechanical = launch_mechanical(batch=True, cleanup_on_exit=False)
print(mechanical)
Ansys Mechanical [Ansys Mechanical Enterprise]
Product Version:241
Software build date: 11/27/2023 10:24:20

Initialize variable for workflow#

Set the part_file_path variable on the server for later use. Make this variable compatible for Windows, Linux, and Docker containers.

project_directory = mechanical.project_directory
print(f"project directory = {project_directory}")
project directory = /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/

Download required geometry file#

Download the required file. Print the file path for the geometry file.

geometry_path = download_file(
    "example_05_td26_Rubber_Boot_Seal.agdb", "pymechanical", "00_basic"
)
print(f"Downloaded the geometry file to: {geometry_path}")

# Upload the file to the project directory.
mechanical.upload(file_name=geometry_path, file_location_destination=project_directory)

# Build the path relative to project directory.
base_name = os.path.basename(geometry_path)
combined_path = os.path.join(project_directory, base_name)
part_file_path = combined_path.replace("\\", "\\\\")
mechanical.run_python_script(f"part_file_path='{part_file_path}'")
Downloaded the geometry file to: /home/runner/.local/share/ansys_mechanical_core/examples/example_05_td26_Rubber_Boot_Seal.agdb

Uploading example_05_td26_Rubber_Boot_Seal.agdb to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/.:   0%|          | 0.00/3.02M [00:00<?, ?B/s]
Uploading example_05_td26_Rubber_Boot_Seal.agdb to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/.: 100%|██████████| 3.02M/3.02M [00:00<00:00, 453MB/s]

''

Download required material files#

Download the required files. Print the file path for the material file.

mat_path = download_file("example_05_Boot_Mat.xml", "pymechanical", "00_basic")
print(f"Downloaded the material file to: {mat_path}")

# Upload the file to the project directory.
mechanical.upload(file_name=mat_path, file_location_destination=project_directory)

# Build the path relative to project directory.
base_name = os.path.basename(mat_path)
combined_path = os.path.join(project_directory, base_name)
mat_part_file_path = combined_path.replace("\\", "\\\\")
mechanical.run_python_script(f"mat_part_file_path='{mat_part_file_path}'")

# Verify the path.
result = mechanical.run_python_script("part_file_path")
print(f"part_file_path on server: {result}")
Downloaded the material file to: /home/runner/.local/share/ansys_mechanical_core/examples/example_05_Boot_Mat.xml

Uploading example_05_Boot_Mat.xml to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/.:   0%|          | 0.00/3.20k [00:00<?, ?B/s]
Uploading example_05_Boot_Mat.xml to dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/.: 100%|██████████| 3.20k/3.20k [00:00<00:00, 8.62MB/s]
part_file_path on server: /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/example_05_td26_Rubber_Boot_Seal.agdb

Run the script#

Run the Mechanical script to attach the geometry and set up and solve the analysis.

output = mechanical.run_python_script(
    """
import json
import os

# Section 1: Read geometry and material information from the JSON file.
geometry_import_group_11 = Model.GeometryImportGroup
geometry_import_12 = geometry_import_group_11.AddGeometryImport()
geometry_import_12_format = Ansys.Mechanical.DataModel.Enums.GeometryImportPreference. \
    Format.Automatic
geometry_import_12_preferences = Ansys.ACT.Mechanical.Utilities.GeometryImportPreferences()
geometry_import_12_preferences.ProcessNamedSelections = True
geometry_import_12_preferences.ProcessCoordinateSystems = True
geometry_import_12.Import(part_file_path, geometry_import_12_format,
                          geometry_import_12_preferences)

materials = ExtAPI.DataModel.Project.Model.Materials
materials.Import(mat_part_file_path)

# Section 2: Set up the unit system.
ExtAPI.Application.ActiveUnitSystem = MechanicalUnitSystem.StandardNMM
ExtAPI.Application.ActiveAngleUnit = AngleUnitType.Radian
GEOM = Model.Geometry
PRT1 = [x for x in ExtAPI.DataModel.Tree.AllObjects if x.Name == 'Part'][0]
PRT2 = [x for x in ExtAPI.DataModel.Tree.AllObjects if x.Name == 'Solid'][1]
CS_GRP = Model.CoordinateSystems
GCS = CS_GRP.Children[0]

Model.AddStaticStructuralAnalysis()
STAT_STRUC = Model.Analyses[0]
ANA_SETTING = STAT_STRUC.Children[0]
STAT_STRUC_SOLN = STAT_STRUC.Solution
SOLN_INFO = STAT_STRUC_SOLN.SolutionInformation

# Section 3: Define named selection and coordinate system.
NS_GRP = ExtAPI.DataModel.Project.Model.NamedSelections
TOP_FACE = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Top_Face'][0]
BOTTOM_FACE = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Bottom_Face'][0]
SYMM_FACES30 = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Symm_Faces30'][0]
FACES2 = [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
          if i.Name == 'Faces2'][0]
CYL_FACES2 = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Cyl_Faces2'][0]
RUBBER_BODIES30 = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Rubber_Bodies30'][0]
INNER_FACES30 = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Inner_Faces30'][0]
OUTER_FACES30 = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Outer_Faces30'][0]
SHAFT_FACE = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Shaft_Face'][0]
SYMM_FACES15 = \
    [i for i in NS_GRP.GetChildren[Ansys.ACT.Automation.Mechanical.NamedSelection](True)
     if i.Name == 'Symm_Faces15'][0]

LCS1 = CS_GRP.AddCoordinateSystem()
LCS1.OriginY = Quantity('97[mm]')

# Section 4: Define material.
PRT1.Material = 'Boot'
PRT2.StiffnessBehavior = StiffnessBehavior.Rigid

# Section 5: Define connections.
CONN_GRP = ExtAPI.DataModel.Project.Model.Connections
CONT_REG1 = CONN_GRP.AddContactRegion()
CONT_REG1.TargetLocation = SHAFT_FACE
CONT_REG1.SourceLocation = INNER_FACES30
CONT_REG1.ContactType = ContactType.Frictional
CONT_REG1.FrictionCoefficient = 0.2
CONT_REG1.Behavior = ContactBehavior.Asymmetric
CONT_REG1.SmallSliding = ContactSmallSlidingType.Off
CONT_REG1.DetectionMethod = ContactDetectionPoint.OnGaussPoint
CONT_REG1.UpdateStiffness = UpdateContactStiffness.EachIteration
CONT_REG1.InterfaceTreatment = ContactInitialEffect.AddOffsetRampedEffects
CONT_REG1.TargetGeometryCorrection = TargetCorrection.Smoothing
CONT_REG1.TargetOrientation = TargetOrientation.Cylinder
CONT_REG1.TargetStartingPoint = GCS
CONT_REG1.TargetEndingPoint = LCS1

CONTS = CONN_GRP.Children[0]
CONT_REG2 = CONTS.AddContactRegion()
CONT_REG2.SourceLocation = INNER_FACES30
CONT_REG2.TargetLocation = INNER_FACES30
CONT_REG2.ContactType = ContactType.Frictional
CONT_REG2.FrictionCoefficient = 0.2
CONT_REG2.Behavior = ContactBehavior.Asymmetric
CONT_REG2.SmallSliding = ContactSmallSlidingType.Off
CONT_REG2.DetectionMethod = ContactDetectionPoint.NodalProjectedNormalFromContact
CONT_REG2.UpdateStiffness = UpdateContactStiffness.EachIteration
CONT_REG2.NormalStiffnessValueType = ElementControlsNormalStiffnessType.Factor
CONT_REG2.NormalStiffnessFactor = 1

CONT_REG3 = CONTS.AddContactRegion()
CONT_REG3.SourceLocation = OUTER_FACES30
CONT_REG3.TargetLocation = OUTER_FACES30
CONT_REG3.ContactType = ContactType.Frictional
CONT_REG3.FrictionCoefficient = 0.2
CONT_REG3.Behavior = ContactBehavior.Asymmetric
CONT_REG3.SmallSliding = ContactSmallSlidingType.Off
CONT_REG3.DetectionMethod = ContactDetectionPoint.NodalProjectedNormalFromContact
CONT_REG3.UpdateStiffness = UpdateContactStiffness.EachIteration
CONT_REG3.NormalStiffnessValueType = ElementControlsNormalStiffnessType.Factor
CONT_REG3.NormalStiffnessFactor = 1

# Section 6: Define mesh controls.
MSH = Model.Mesh
FACE_MSH = MSH.AddFaceMeshing()
FACE_MSH.Location = SHAFT_FACE
FACE_MSH.InternalNumberOfDivisions = 1

MSH_SIZE = MSH.AddSizing()
MSH_SIZE.Location = SYMM_FACES15
MSH_SIZE.ElementSize = Quantity('2 [mm]')

MSH.ElementOrder = ElementOrder.Linear
MSH.Resolution = 2
MSH.GenerateMesh()

# Section 7: Define remote points' rigid behaviors and scope them
# to the top and bottom faces of rigid shaft.
RMPT01 = Model.AddRemotePoint()
RMPT01.Location = BOTTOM_FACE
RMPT01.Behavior = LoadBehavior.Rigid

RMPT02 = Model.AddRemotePoint()
RMPT02.Location = TOP_FACE
RMPT02.Behavior = LoadBehavior.Rigid

# Section 8: Define analysis settings and set up loads and supports.
ANA_SETTING.Activate()
ANA_SETTING.LargeDeflection = True
ANA_SETTING.Stabilization = StabilizationType.Off

#ANA_SETTING.NumberOfSteps = 3
ANA_SETTING.NumberOfSteps = 2
ANA_SETTING.CurrentStepNumber = 1
ANA_SETTING.AutomaticTimeStepping = AutomaticTimeStepping.On
ANA_SETTING.DefineBy = TimeStepDefineByType.Substeps
ANA_SETTING.InitialSubsteps = 5
ANA_SETTING.MinimumSubsteps = 5
ANA_SETTING.MaximumSubsteps = 1000
ANA_SETTING.StoreResultsAt = TimePointsOptions.EquallySpacedPoints
ANA_SETTING.StoreResulsAtValue = 5

ANA_SETTING.CurrentStepNumber = 2
ANA_SETTING.AutomaticTimeStepping = AutomaticTimeStepping.On
ANA_SETTING.DefineBy = TimeStepDefineByType.Substeps
ANA_SETTING.InitialSubsteps = 10
ANA_SETTING.MinimumSubsteps = 10
ANA_SETTING.MaximumSubsteps = 1000
ANA_SETTING.StoreResultsAt = TimePointsOptions.EquallySpacedPoints
ANA_SETTING.StoreResulsAtValue = 10

ANA_SETTING.CurrentStepNumber = 3
ANA_SETTING.AutomaticTimeStepping = AutomaticTimeStepping.On
ANA_SETTING.DefineBy = TimeStepDefineByType.Substeps
ANA_SETTING.InitialSubsteps = 30
ANA_SETTING.MinimumSubsteps = 30
ANA_SETTING.MaximumSubsteps = 1000
ANA_SETTING.StoreResultsAt = TimePointsOptions.EquallySpacedPoints
ANA_SETTING.StoreResulsAtValue = 20

SOLN_INFO.NewtonRaphsonResiduals = 4

REM_DISP = STAT_STRUC.AddRemoteDisplacement()
REM_DISP.Location = RMPT01
REM_DISP.XComponent.Inputs[0].DiscreteValues = [Quantity("0 [s]"), Quantity("1 [s]"),
                                                Quantity("2 [s]"), Quantity("3 [s]")]
REM_DISP.XComponent.Output.DiscreteValues = [Quantity("0 [mm]"), Quantity("0 [mm]"),
                                             Quantity("0 [mm]"), Quantity("0 [mm]")]
REM_DISP.YComponent.Inputs[0].DiscreteValues = [Quantity("0 [s]"), Quantity("1 [s]"),
                                                Quantity("2 [s]"), Quantity("3 [s]")]
REM_DISP.YComponent.Output.DiscreteValues = [Quantity("0 [mm]"), Quantity("0 [mm]"),
                                             Quantity("-10 [mm]"), Quantity("-10 [mm]")]
REM_DISP.ZComponent.Inputs[0].DiscreteValues = [Quantity("0 [s]"), Quantity("1 [s]"),
                                                Quantity("2 [s]"), Quantity("3 [s]")]
REM_DISP.ZComponent.Output.DiscreteValues = [Quantity("0 [mm]"), Quantity("0 [mm]"),
                                             Quantity("0 [mm]"), Quantity("0 [mm]")]

REM_DISP.RotationX.Inputs[0].DiscreteValues = [Quantity("0 [s]"), Quantity("1 [s]"),
                                               Quantity("2 [s]"), Quantity("3 [s]")]
REM_DISP.RotationX.Output.DiscreteValues = [Quantity("0 [rad]"), Quantity("0 [rad]"),
                                            Quantity("0 [rad]"), Quantity("0 [rad]")]
REM_DISP.RotationY.Inputs[0].DiscreteValues = [Quantity("0 [s]"), Quantity("1 [s]"),
                                               Quantity("2 [s]"), Quantity("3 [s]")]
REM_DISP.RotationY.Output.DiscreteValues = [Quantity("0 [rad]"), Quantity("0 [rad]"),
                                            Quantity("0 [rad]"), Quantity("0 [rad]")]
REM_DISP.RotationZ.Inputs[0].DiscreteValues = [Quantity("0 [s]"), Quantity("1 [s]"),
                                               Quantity("2 [s]"), Quantity("3 [s]")]
REM_DISP.RotationZ.Output.DiscreteValues = [Quantity("0 [rad]"), Quantity("0 [rad]"),
                                            Quantity("0 [rad]"), Quantity("0.55 [rad]")]

FRIC_SUP01 = STAT_STRUC.AddFrictionlessSupport()
FRIC_SUP01.Location = SYMM_FACES30
FRIC_SUP01.Name = "Symmetry_BC"
FRIC_SUP02 = STAT_STRUC.AddFrictionlessSupport()
FRIC_SUP02.Location = FACES2
FRIC_SUP02.Name = "Boot_Bottom_BC"
FRIC_SUP03 = STAT_STRUC.AddFrictionlessSupport()
FRIC_SUP03.Location = CYL_FACES2
FRIC_SUP03.Name = "Boot_Radial_BC"

# Section 9: Add total deformation and equivalent stress.
TOT_DEF = STAT_STRUC.Solution.AddTotalDeformation()
TOT_DEF.Location = RUBBER_BODIES30

EQV_STRS = STAT_STRUC.Solution.AddEquivalentStress()
EQV_STRS.Location = RUBBER_BODIES30

# Section 10: Set the number of processors to 6 using DANSYS.
#testval2 = STAT_STRUC.SolveConfiguration.SolveProcessSettings.MaxNumberOfCores
#STAT_STRUC.SolveConfiguration.SolveProcessSettings.MaxNumberOfCores = 6

# Section 11: Solve for the normal stiffness value set to 1 for self contacts.
# between flexible rubber boot
STAT_STRUC.Solution.Solve(True)

# Section 12: Set isometric view and zoom to fit.
cam = Graphics.Camera
cam.SetSpecificViewOrientation(ViewOrientationType.Iso)
cam.SetFit()

# Section 13: Store post-processing images.
mechdir = STAT_STRUC.Children[0].SolverFilesDirectory
export_path = os.path.join(mechdir, "total_deformation.png")
TOT_DEF.Activate()
Graphics.ExportImage(export_path, GraphicsImageExportFormat.PNG)

export_path2 = os.path.join(mechdir, "equivalent_stress.png")
EQV_STRS.Activate()
Graphics.ExportImage(export_path2, GraphicsImageExportFormat.PNG)

my_results_details = {
    "Equivalent_Stress": str(EQV_STRS.Maximum),
    "Total_Deformation": str(TOT_DEF.Maximum),
}

json.dumps(my_results_details)
"""
)
print(output)
{"Equivalent_Stress": "0.7488239064185831 [MPa]", "Total_Deformation": "10.453093871074408 [mm]"}

Initialize the variable needed for the image directory#

Set the image_dir variable for later use. Make the variable compatible for Windows, Linux, and Docker containers.

# image_directory_modified = project_directory.replace("\\", "\\\\")
mechanical.run_python_script(f"image_dir=ExtAPI.DataModel.AnalysisList[0].WorkingDir")

# Verify the path for image directory.
result_image_dir_server = mechanical.run_python_script(f"image_dir")
print(f"Images are stored on the server at: {result_image_dir_server}")
Images are stored on the server at: /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/

Download the image and plot#

Download one image file from the server to the current working directory and plot using matplotlib.

def get_image_path(image_name):
    return os.path.join(result_image_dir_server, image_name)


def display_image(path):
    print(f"Printing {path} using matplotlib")
    image1 = mpimg.imread(path)
    plt.figure(figsize=(15, 15))
    plt.axis("off")
    plt.imshow(image1)
    plt.show()


image_names = ["total_deformation.png", "equivalent_stress.png"]
for image_name in image_names:
    image_path_server = get_image_path(image_name)

    if image_path_server != "":
        current_working_directory = os.getcwd()

        local_file_path_list = mechanical.download(
            image_path_server, target_dir=current_working_directory
        )
        image_local_path = local_file_path_list[0]
        print(f"Local image path : {image_local_path}")

        display_image(image_local_path)
  • example 05 td 026
  • example 05 td 026
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/total_deformation.png to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/total_deformation.png:   0%|          | 0.00/81.4k [00:00<?, ?B/s]
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/total_deformation.png to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/total_deformation.png: 100%|██████████| 81.4k/81.4k [00:00<00:00, 349MB/s]
Local image path : /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/total_deformation.png
Printing /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/total_deformation.png using matplotlib

Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/equivalent_stress.png to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/equivalent_stress.png:   0%|          | 0.00/89.5k [00:00<?, ?B/s]
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/equivalent_stress.png to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/equivalent_stress.png: 100%|██████████| 89.5k/89.5k [00:00<00:00, 464MB/s]
Local image path : /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/equivalent_stress.png
Printing /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/equivalent_stress.png using matplotlib

Download output file from solve and print contents#

Download the solve.out file from the server to the current working directory and print the contents. Remove the solve.out file.

def get_solve_out_path(mechanical):
    """Get the solve out path and return."""
    solve_out_path = ""
    for file_path in mechanical.list_files():
        if file_path.find("solve.out") != -1:
            solve_out_path = file_path
            break

    return solve_out_path


def write_file_contents_to_console(path):
    """Write file contents to console."""
    with open(path, "rt") as file:
        for line in file:
            print(line, end="")


solve_out_path = get_solve_out_path(mechanical)

if solve_out_path != "":
    current_working_directory = os.getcwd()

    mechanical.download(solve_out_path, target_dir=current_working_directory)
    solve_out_local_path = os.path.join(current_working_directory, "solve.out")

    write_file_contents_to_console(solve_out_local_path)

    os.remove(solve_out_local_path)
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/solve.out to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/solve.out:   0%|          | 0.00/133k [00:00<?, ?B/s]
Downloading dns:///127.0.0.1:10000:/tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/solve.out to /home/runner/work/pymechanical-examples/pymechanical-examples/examples/technology_showcase/solve.out: 100%|██████████| 133k/133k [00:00<00:00, 690MB/s]

 Ansys Mechanical Enterprise


 *------------------------------------------------------------------*
 |                                                                  |
 |   W E L C O M E   T O   T H E   A N S Y S (R)  P R O G R A M     |
 |                                                                  |
 *------------------------------------------------------------------*




 ***************************************************************
 *         ANSYS MAPDL 2024 R1          LEGAL NOTICES          *
 ***************************************************************
 *                                                             *
 * Copyright 1971-2024 Ansys, Inc.  All rights reserved.       *
 * Unauthorized use, distribution or duplication is            *
 * prohibited.                                                 *
 *                                                             *
 * Ansys is a registered trademark of Ansys, Inc. or its       *
 * subsidiaries in the United States or other countries.       *
 * See the Ansys, Inc. online documentation or the Ansys, Inc. *
 * documentation CD or online help for the complete Legal      *
 * Notice.                                                     *
 *                                                             *
 ***************************************************************
 *                                                             *
 * THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION       *
 * INCLUDE TRADE SECRETS AND CONFIDENTIAL AND PROPRIETARY      *
 * PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS.    *
 * The software products and documentation are furnished by    *
 * Ansys, Inc. or its subsidiaries under a software license    *
 * agreement that contains provisions concerning               *
 * non-disclosure, copying, length and nature of use,          *
 * compliance with exporting laws, warranties, disclaimers,    *
 * limitations of liability, and remedies, and other           *
 * provisions.  The software products and documentation may be *
 * used, disclosed, transferred, or copied only in accordance  *
 * with the terms and conditions of that software license      *
 * agreement.                                                  *
 *                                                             *
 * Ansys, Inc. is a UL registered                              *
 * ISO 9001:2015 company.                                      *
 *                                                             *
 ***************************************************************
 *                                                             *
 * This product is subject to U.S. laws governing export and   *
 * re-export.                                                  *
 *                                                             *
 * For U.S. Government users, except as specifically granted   *
 * by the Ansys, Inc. software license agreement, the use,     *
 * duplication, or disclosure by the United States Government  *
 * is subject to restrictions stated in the Ansys, Inc.        *
 * software license agreement and FAR 12.212 (for non-DOD      *
 * licenses).                                                  *
 *                                                             *
 ***************************************************************

 2024 R1

 Point Releases and Patches installed:

 Ansys, Inc. License Manager 2024 R1
 Structures 2024 R1
 LS-DYNA 2024 R1
 Mechanical Products 2024 R1


          *****  MAPDL COMMAND LINE ARGUMENTS  *****
  BATCH MODE REQUESTED (-b)    = NOLIST
  INPUT FILE COPY MODE (-c)    = COPY
  DISTRIBUTED MEMORY PARALLEL REQUESTED
       4 PARALLEL PROCESSES REQUESTED WITH SINGLE THREAD PER PROCESS
    TOTAL OF     4 CORES REQUESTED
  INPUT FILE NAME              = /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/dummy.dat
  OUTPUT FILE NAME             = /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/solve.out
  START-UP FILE MODE           = NOREAD
  STOP FILE MODE               = NOREAD

 RELEASE= 2024 R1              BUILD= 24.1      UP20231106   VERSION=LINUX x64
 CURRENT JOBNAME=file0  08:56:54  MAY 06, 2024 CP=      0.230


 PARAMETER _DS_PROGRESS =     999.0000000

 /INPUT FILE= ds.dat  LINE=       0



 *** NOTE ***                            CP =       0.286   TIME= 08:56:54
 The /CONFIG,NOELDB command is not valid in a distributed memory
 parallel solution.  Command is ignored.

 *GET  _WALLSTRT  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.94833333

 TITLE=
 --Static Structural

  ACT Extensions:
      LSDYNA, 2024.1
      5f463412-bd3e-484b-87e7-cbc0a665e474, wbex


 SET PARAMETER DIMENSIONS ON  _WB_PROJECTSCRATCH_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_PROJECTSCRATCH_DIR(1) = /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/

 SET PARAMETER DIMENSIONS ON  _WB_SOLVERFILES_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_SOLVERFILES_DIR(1) = /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/

 SET PARAMETER DIMENSIONS ON  _WB_USERFILES_DIR
  TYPE=STRI  DIMENSIONS=      248        1        1

 PARAMETER _WB_USERFILES_DIR(1) = /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/UserFiles/
 --- Data in consistent NMM units. See Solving Units in the help system for more

 MPA UNITS SPECIFIED FOR INTERNAL
  LENGTH      = MILLIMETERS (mm)
  MASS        = TONNE (Mg)
  TIME        = SECONDS (sec)
  TEMPERATURE = CELSIUS (C)
  TOFFSET     = 273.0
  FORCE       = NEWTON (N)
  HEAT        = MILLIJOULES (mJ)

 INPUT  UNITS ARE ALSO SET TO MPA

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:56:54  MAY 06, 2024 CP=      0.291

 --Static Structural



          ***** MAPDL ANALYSIS DEFINITION (PREP7) *****
 *********** Nodes for the whole assembly ***********
 *********** Nodes for all Remote Points ***********
 *********** Elements for Body 1 "   B-REP" ***********
 *********** Elements for Body 2 "   B-REP" ***********
 *********** Elements for Body 3 "   B-REP" ***********
 *********** Elements for Body 4 "   B-REP" ***********
 *********** Elements for Body 5 "   B-REP" ***********
 *********** Elements for Body 6 "   B-REP" ***********
 *********** Elements for Body 7 "   B-REP" ***********
 *********** Elements for Body 8 "   B-REP" ***********
 *********** Elements for Body 9 "   B-REP" ***********
 *********** Elements for Body 10 "   B-REP" ***********
 *********** Elements for Body 11 "   B-REP" ***********
 *********** Elements for Body 12 "   B-REP" ***********
 *********** Elements for Body 13 "   B-REP" ***********
 *********** Elements for Body 14 "   B-REP" ***********
 *********** Elements for Body 15 "   B-REP" ***********
 *********** Elements for Body 16 "   B-REP" ***********
 *********** Elements for Body 17 "   B-REP" ***********
 *********** Elements for Body 18 "   B-REP" ***********
 *********** Elements for Body 19 "   B-REP" ***********
 *********** Elements for Body 20 "   B-REP" ***********
 *********** Elements for Body 21 "   B-REP" ***********
 *********** Elements for Body 22 "   B-REP" ***********
 *********** Elements for Body 23 "   B-REP" ***********
 *********** Elements for Body 24 "   B-REP" ***********
 *********** Elements for Body 25 "   B-REP" ***********
 *********** Elements for Body 26 "   B-REP" ***********
 *********** Elements for Body 27 "   B-REP" ***********
 *********** Elements for Body 28 "   B-REP" ***********
 *********** Elements for Body 29 "   B-REP" ***********
 *********** Elements for Body 30 "   B-REP" ***********
 *********** Elements for Body 31 "Solid" ***********
 *********** Send Body as a Rigid Body ***********
 *********** Send User Defined Coordinate System(s) ***********
 *********** Set Reference Temperature ***********
 *********** Send Materials ***********
 *********** Create Contact "Contact Region" ***********
             Real Constant Set For Above Contact Is 34 & 33
 *********** Create Contact "Contact Region 2" ***********
             Real Constant Set For Above Contact Is 36 & 35
 *********** Create Contact "Contact Region 3" ***********
             Real Constant Set For Above Contact Is 38 & 37
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Element Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 *********** Send Named Selection as Node Component ***********
 ********* Frictionless Supports X *********
 ********* Frictionless Supports Y *********
 ********* Frictionless Supports Z *********
 *********** Node Rotations ***********
 *********** Create Remote Point "Remote Point" ***********
 *********** Create Remote Point "Remote Point 2" ***********
 *********** Construct Remote Displacement ***********
 *** Create a component for all remote displacements ***


 ***** ROUTINE COMPLETED *****  CP =         0.453


 --- Number of total nodes = 4254
 --- Number of contact elements = 6630
 --- Number of spring elements = 0
 --- Number of bearing elements = 0
 --- Number of solid elements = 2656
 --- Number of condensed parts = 0
 --- Number of total elements = 9275

 *GET  _WALLBSOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.94833333
 ****************************************************************************
 *************************    SOLUTION       ********************************
 ****************************************************************************

 *****  MAPDL SOLUTION ROUTINE  *****


 PERFORM A STATIC ANALYSIS
  THIS WILL BE A NEW ANALYSIS

 LARGE DEFORMATION ANALYSIS

 PARAMETER _THICKRATIO =     0.000000000

 USE SPARSE MATRIX DIRECT SOLVER

 CONTACT INFORMATION PRINTOUT LEVEL       1

 CHECK INITIAL OPEN/CLOSED STATUS OF SELECTED CONTACT ELEMENTS
      AND LIST DETAILED CONTACT PAIR INFORMATION

 SPLIT CONTACT SURFACES AT SOLVE PHASE

    NUMBER OF SPLITTING TBD BY PROGRAM

 DO NOT COMBINE ELEMENT MATRIX FILES (.emat) AFTER DISTRIBUTED PARALLEL SOLUTION

 DO NOT COMBINE ELEMENT SAVE DATA FILES (.esav) AFTER DISTRIBUTED PARALLEL SOLUTION

 NLDIAG: Nonlinear diagnostics CONT option is set to ON.
         Writing frequency : each ITERATION.

 DEFINE RESTART CONTROL FOR LOADSTEP LAST
 AT FREQUENCY OF LAST AND NUMBER FOR OVERWRITE IS   -1

 DELETE RESTART FILES OF ENDSTEP
 ****************************************************
 ******************* SOLVE FOR LS 1 OF 2 ****************

 SPECIFIED CONSTRAINT UX   FOR SELECTED NODES         4253 TO        4253 BY           1
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI133UX

 SPECIFIED CONSTRAINT UY   FOR SELECTED NODES         4253 TO        4253 BY           1
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI133UY

 SPECIFIED CONSTRAINT UZ   FOR SELECTED NODES         4253 TO        4253 BY           1
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI133UZ

 SPECIFIED CONSTRAINT ROTX FOR SELECTED NODES         4253 TO        4253 BY           1
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI133ROTX

 SPECIFIED CONSTRAINT ROTY FOR SELECTED NODES         4253 TO        4253 BY           1
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI133ROTY

 SPECIFIED CONSTRAINT ROTZ FOR SELECTED NODES         4253 TO        4253 BY           1
 SET ACCORDING TO TABLE PARAMETER = _LOADVARI133ROTZ

 PRINTOUT RESUMED BY /GOP

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE      30 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE   1000 SUBSTEPS AS A MAXIMUM
   USE     30 SUBSTEPS AS A MINIMUM

 TIME=  1.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE ETMP ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR ALL APPLICABLE ENTITIES

 PRINTOUT RESUMED BY /GOP

 WRITE MISC ITEMS TO THE DATABASE WITH A FREQUENCY OF    -20
   FOR THE ENTITIES DEFINED BY COMPONENT _ELMISC

 NONLINEAR STABILIZATION CONTROL:
 KEY=OFF


 NLDIAG: Nonlinear diagnostics NRRE option is set to ON.
 The number of files/iterations to be saved for NRRE nonlinear diagnostics has been set to   4

 *GET  ANSINTER_  FROM  ACTI  ITEM=INT        VALUE=  0.00000000

 *IF  ANSINTER_                         ( =   0.00000     )  NE
      0                                 ( =   0.00000     )  THEN

 *ENDIF

 *** NOTE ***                            CP =       0.679   TIME= 08:56:54
 The automatic domain decomposition logic has selected the MESH domain
 decomposition method with 4 processes per solution.

 *****  MAPDL SOLVE    COMMAND  *****

 *** WARNING ***                         CP =       0.709   TIME= 08:56:55
 Element shape checking is currently inactive.  Issue SHPP,ON or
 SHPP,WARN to reactivate, if desired.

 *** NOTE ***                            CP =       0.743   TIME= 08:56:55
 The model data was checked and warning messages were found.
  Please review output or errors file (
 /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural/fil
 le0.err ) for these warning messages.

 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS ***
      --- GIVE SUGGESTIONS AND RESET THE KEY OPTIONS ---

 ELEMENT TYPE         1 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         2 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         3 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         4 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         5 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         6 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         7 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         8 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE         9 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        10 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        11 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        12 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        13 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        14 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        15 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        16 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        17 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        18 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        19 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        20 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        21 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        22 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        23 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        24 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        25 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        26 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        27 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        28 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        29 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.

 ELEMENT TYPE        30 IS SOLID185. KEYOPT(2) IS ALREADY SET AS SUGGESTED AND NO
 RESETTING IS NEEDED.



 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:56:55  MAY 06, 2024 CP=      0.761

 --Static Structural



                       S O L U T I O N   O P T I O N S

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D
   DEGREES OF FREEDOM. . . . . . UX   UY   UZ   ROTX ROTY ROTZ
   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE)
   OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . .  273.15
   NONLINEAR GEOMETRIC EFFECTS . . . . . . . . . .ON
   EQUATION SOLVER OPTION. . . . . . . . . . . . .SPARSE
   NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN
   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC

 *** NOTE ***                            CP =       0.844   TIME= 08:56:55
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 CHECK INITIAL OPEN/CLOSED STATUS OF SELECTED CONTACT ELEMENTS
      AND LIST DETAILED CONTACT PAIR INFORMATION

 *** NOTE ***                            CP =       0.915   TIME= 08:56:55
 Internal nodes from 4255 to 4256 are created.
 2 internal nodes are used for handling degrees of freedom on pilot
 nodes of rigid target surfaces.

 *** NOTE ***                            CP =       1.024   TIME= 08:56:55
 Internal nodes from 4255 to 4256 are created.
 2 internal nodes are used for handling degrees of freedom on pilot
 nodes of rigid target surfaces.
 *WARNING*: Node 4252 is applied on different contact pairs (real ID 32
 & 33) as the pilot node.  These two pairs will be merged.
 *WARNING*: Node 4225 has been used on different contact pairs (real ID
 32 & 33).  These two pairs will be merged.  Please check the model
 carefully.

 *** WARNING ***                         CP =       1.383   TIME= 08:56:55
 Overconstraint may occur for Lagrange multiplier or MPC based contact
 algorithm.

 *** WARNING ***                         CP =       1.383   TIME= 08:56:55
 Boundary conditions, coupling, and/or constraint equations have been
 applied on certain contact nodes (for example 0).

 SPLITTING CONTACT SURFACES WITH A CONNECTED REGION


 CONTACT PAIR ASSOCIATED WITH REAL CONSTANT 33 SPLIT INTO 2 NEW PAIRS
 ASSOCIATED WITH REAL CONSTANTS 39 - 39

 CONTACT PAIR ASSOCIATED WITH REAL CONSTANT 35 SPLIT INTO 2 NEW PAIRS
 ASSOCIATED WITH REAL CONSTANTS 40 - 40

 CONTACT PAIR ASSOCIATED WITH REAL CONSTANT 37 SPLIT INTO 2 NEW PAIRS
 ASSOCIATED WITH REAL CONSTANTS 41 - 41

 *** NOTE ***                            CP =       1.483   TIME= 08:56:55
 Rotational degrees of freedom ROTX+ROTY+ROTZ have been activated for
 pilot node 4252.

 NEW CONTACT ELEMENTS FROM 13661 TO 13820 WERE CREATED TO HANDLE OVERLAPPING LAYERS

 NEW TARGET ELEMENTS FROM 13821 TO 16476 WERE CREATED TO HANDLE
 THE SPLIT CONTACT PAIRS

 *** NOTE ***                            CP =       1.548   TIME= 08:56:55
 Internal nodes from 4255 to 4257 are created.
 3 internal nodes are used for handling degrees of freedom on pilot
 nodes of rigid target surfaces.

 *** NOTE ***                            CP =       1.622   TIME= 08:56:55
 Internal nodes from 4255 to 4257 are created.
 3 internal nodes are used for handling degrees of freedom on pilot
 nodes of rigid target surfaces.
 *WARNING*: Node 4252 is applied on different contact pairs (real ID 32
 & 33) as the pilot node.  These two pairs will be merged.
 *WARNING*: Node 4225 has been used on different contact pairs (real ID
 32 & 33).  These two pairs will be merged.  Please check the model
 carefully.
 *WARNING*: The self contact pair specified by real constant set 35 also
 overlaps with another symmetric contact pair (e.g.  40).

 *** NOTE ***                            CP =       2.504   TIME= 08:56:55
 Rigid target surface identified by real constant set 32.  The degrees
 of freedom of the rigid surface are driven by the pilot node 4252.
 Internal MPC will be built.
 Boundary conditions can be applied on any target node.
 This pair will be merged with other pair defined by real constant set
 39.
 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ
 *WARNING*: Boundary conditions, coupling, and/or constraint equations
 have been applied on certain target nodes (for example 4253).
 ****************************************


 *** NOTE ***                            CP =       2.504   TIME= 08:56:55
 Rigid-deformable contact pair identified by real constant set 33 and
 contact element type 33 has been set up.  The degrees of freedom of
 the rigid surface are driven by the pilot node 4252.
 Boundary conditions can be applied on any target node.
 This pair will be merged with other pair defined by real constant set
 32.
 The current pair was split from a base pair (real ID 33).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       54.447
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.16530
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.34688E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.4688
 Average contact pair depth                    1.6530
 Average target surface length                 51.411
 Default pinball region factor PINB            4.0000
 The resulting pinball region                  6.6120
 All target elements use a cylindrical geometry correction
 Initial penetration will be ramped during the first load step.

 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Max.  Initial penetration 2.04152853 was detected between contact
 element 7070 and target element 8371.
 You may move entire target surface by : x= 0, y= 0, z= 0,to reduce
 initial penetration.
 ****************************************


 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Rigid-deformable contact pair identified by real constant set 39 and
 contact element type 33 has been set up.  The degrees of freedom of
 the rigid surface are driven by the pilot node 4252.
 Boundary conditions can be applied on any target node.
 This pair will be merged with other pair defined by real constant set
 32.
 The current pair was split from a base pair (real ID 33).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       54.447
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.16530
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.34688E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.4688
 Average contact pair depth                    1.6530
 Average target surface length                 51.411
 Default pinball region factor PINB            4.0000
 The resulting pinball region                  6.6120
 All target elements use a cylindrical geometry correction
 Initial penetration will be ramped during the first load step.

 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Max.  Initial penetration 2.04152853 was detected between contact
 element 7070 and target element 8371.
 You may move entire target surface by : x= -1.94952245, y=
 2.953205466E-02, z= 0.605251044,to reduce initial penetration.
 ****************************************


 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Self Deformable- deformable contact pair identified by real constant
 set 35 and contact element type 35 has been set up.
 The current pair was split from a base pair (real ID 35).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: nodal point (surface projection based)
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       27.223
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.16530
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.34688E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.4688
 Average contact pair depth                    1.6530
 Average target surface length                 3.1390
 Default pinball region factor PINB            1.0000
 The resulting pinball region                 0.82650
 *WARNING*: Initial penetration is included.

 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 No contact was detected for this contact pair.
 ****************************************


 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Self Deformable- deformable contact pair identified by real constant
 set 40 and contact element type 35 has been set up.
 The current pair was split from a base pair (real ID 35).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: nodal point (surface projection based)
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       27.223
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.16530
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.34688E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.4688
 Average contact pair depth                    1.6530
 Average target surface length                 3.1390
 Default pinball region factor PINB            1.0000
 The resulting pinball region                 0.82650
 *WARNING*: Initial penetration is included.

 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 No contact was detected for this contact pair.
 ****************************************


 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Self Deformable- deformable contact pair identified by real constant
 set 37 and contact element type 37 has been set up.
 The current pair was split from a base pair (real ID 37).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: nodal point (surface projection based)
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       28.826
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.15611
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.37730E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.7730
 Average contact pair depth                    1.5611
 Average target surface length                 3.3864
 Default pinball region factor PINB            1.0000
 The resulting pinball region                 0.78054
 *WARNING*: Initial penetration is included.

 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 No contact was detected for this contact pair.
 ****************************************


 *** NOTE ***                            CP =       2.505   TIME= 08:56:55
 Self Deformable- deformable contact pair identified by real constant
 set 41 and contact element type 37 has been set up.
 The current pair was split from a base pair (real ID 37).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: nodal point (surface projection based)
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       28.826
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.15611
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.37730E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.7730
 Average contact pair depth                    1.5611
 Average target surface length                 3.3864
 Default pinball region factor PINB            1.0000
 The resulting pinball region                 0.78054
 *WARNING*: Initial penetration is included.

 *** NOTE ***                            CP =       2.506   TIME= 08:56:55
 No contact was detected for this contact pair.
 ****************************************


 *** WARNING ***                         CP =       2.506   TIME= 08:56:55
 Overconstraint may occur for Lagrange multiplier or MPC based contact
 algorithm.
 The reasons for possible overconstraint are:

 *** WARNING ***                         CP =       2.506   TIME= 08:56:55
 Boundary conditions, coupling, and/or constraint equations have been
 applied on certain contact nodes (for example 4253).
 ****************************************



 *** NOTE ***                            CP =       2.561   TIME= 08:56:55
 Internal nodes from 4255 to 4257 are created.
 3 internal nodes are used for handling degrees of freedom on pilot
 nodes of rigid target surfaces.



     D I S T R I B U T E D   D O M A I N   D E C O M P O S E R

  ...Number of elements: 12091
  ...Number of nodes:    4257
  ...Decompose to 4 CPU domains
  ...Element load balance ratio =     1.275


                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .    30
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .  1000
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .    30
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   STRESS-STIFFENING . . . . . . . . . . . . . . .    ON
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        -20
      RSOL        -20
      EANG        -20
      ETMP        -20
      VENG        -20
      STRS        -20
      EPEL        -20
      EPPL        -20
      CONT        -20
      MISC        -20       _ELMISC


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr
 *WARNING*: Node 4252 is applied on different contact pairs (real ID 32
 & 33) as the pilot node.  These two pairs will be merged.
 *WARNING*: Node 4225 has been used on different contact pairs (real ID
 32 & 33).  These two pairs will be merged.  Please check the model
 carefully.

 *** NOTE ***                            CP =       3.350   TIME= 08:56:55
 Rigid target surface identified by real constant set 32.  The degrees
 of freedom of the rigid surface are driven by the pilot node 4252.
 Internal MPC will be built.
 Boundary conditions can be applied on any target node.
 This pair will be merged with other pair defined by real constant set
 33.
 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ
 *WARNING*: Boundary conditions, coupling, and/or constraint equations
 have been applied on certain target nodes (for example 4253).
 ****************************************


 *** NOTE ***                            CP =       3.351   TIME= 08:56:55
 Rigid-deformable contact pair identified by real constant set 39 and
 contact element type 33 has been set up.  The degrees of freedom of
 the rigid surface are driven by the pilot node 4252.
 Boundary conditions can be applied on any target node.
 This pair will be merged with other pair defined by real constant set
 32.
 The current pair was split from a base pair (real ID 33).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       54.447
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.16530
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.34688E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.4688
 Average contact pair depth                    1.6530
 Average target surface length                 51.411
 Default pinball region factor PINB            4.0000
 The resulting pinball region                  6.6120
 All target elements use a cylindrical geometry correction
 Initial penetration will be ramped during the first load step.

 *** NOTE ***                            CP =       3.351   TIME= 08:56:55
 Max.  Initial penetration 2.04152853 was detected between contact
 element 7070 and target element 8371.
 You may move entire target surface by : x= -1.94952245, y=
 2.953205466E-02, z= 0.605251044,to reduce initial penetration.
 ****************************************


 *** NOTE ***                            CP =       3.352   TIME= 08:56:55
 Rigid-deformable contact pair identified by real constant set 33 and
 contact element type 33 has been set up.  The degrees of freedom of
 the rigid surface are driven by the pilot node 4252.
 Boundary conditions can be applied on any target node.
 This pair will be merged with other pair defined by real constant set
 32.
 The current pair was split from a base pair (real ID 33).
 Contact algorithm: Augmented Lagrange method
 Contact detection at: Gauss integration point
 Contact stiffness factor FKN                  1.0000
 The resulting initial contact stiffness       54.447
 Default penetration tolerance factor FTOLN   0.10000
 The resulting penetration tolerance          0.16530
 Max. initial friction coefficient MU         0.20000
 Default tangent stiffness factor FKT          1.0000
 Default elastic slip factor SLTOL            0.10000E-01
 The resulting elastic slip tolerance         0.34688E-01
 Update contact stiffness at each iteration
 Default Max. friction stress TAUMAX          0.10000E+21
 Average contact surface length                3.4688
 Average contact pair depth                    1.6530
 Average target surface length                 51.411
 Default pinball region factor PINB            4.0000
 The resulting pinball region                  6.6120
 All target elements use a cylindrical geometry correction
 Initial penetration will be ramped during the first load step.

 *** NOTE ***                            CP =       3.352   TIME= 08:56:55
 No contact was detected for this contact pair.
 ****************************************

 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 25, BY SOLUTION CONTROL LOGIC.


 The FEA model contains 0 external CE equations and 12 internal CE
 equations.

 *************************************************
  SUMMARY FOR CONTACT PAIR IDENTIFIED BY REAL CONSTANT SET          39
 Max.  Penetration of -6.805095095E-02 has been detected between contact
 element 7070 and target element 8371.

 Max.  Geometrical penetration of -2.04152853 has been detected between
 contact element 7070 and target element 8371.
 For total 1320 contact elements, there are 200 elements are in contact.
 There are 200 elements are in sticking.
 Contacting area 691.565258.
 Max.  Pinball distance 6.61198608.
 One of the contact searching regions contains at least 9 target
 elements.
 Max.  Pressure/force 0.400937727.
 Max.  Normal stiffness 5.89172849.
 Min.  Normal stiffness 5.89172849.
 Max.  Tangential stiffness 2.31166926.
 Min.  Tangential stiffness 0.466810091.
 *************************************************

 *************************************************
  SUMMARY FOR CONTACT PAIR IDENTIFIED BY REAL CONSTANT SET          33
 Max.  Penetration of -6.805095095E-02 has been detected between contact
 element 7070 and target element 8371.
 For total 1320 contact elements, there are 200 elements are in contact.
 Max.  Pinball distance 6.61198608.
 Contact pair force norm 160.090599 and criterion 16.0090601.
 *************************************************


                         ***********  PRECISE MASS SUMMARY  ***********

   TOTAL RIGID BODY MASS MATRIX ABOUT ORIGIN
               Translational mass               |   Coupled translational/rotational mass
        0.46886E-03    0.0000        0.0000     |     0.0000       0.29956E-19  -0.22740E-01
         0.0000       0.46886E-03    0.0000     |   -0.29956E-19    0.0000       0.52623E-19
         0.0000        0.0000       0.46886E-03 |    0.22740E-01  -0.52623E-19    0.0000
     ------------------------------------------ | ------------------------------------------
                                                |         Rotational mass (inertia)
                                                |     1.4914      -0.25522E-17  -0.33621E-35
                                                |   -0.25522E-17   0.45484E-01  -0.14529E-17
                                                |   -0.33621E-35  -0.14529E-17    1.4914

   TOTAL MASS = 0.46886E-03
     The mass principal axes coincide with the global Cartesian axes

   CENTER OF MASS (X,Y,Z)=   0.11224E-15    48.500       0.63890E-16

   TOTAL INERTIA ABOUT CENTER OF MASS
        0.38851      -0.38519E-33    0.0000
       -0.38519E-33   0.45484E-01    0.0000
         0.0000        0.0000       0.38851
     The inertia principal axes coincide with the global Cartesian axes


  *** MASS SUMMARY BY ELEMENT TYPE ***

  TYPE      MASS
    31  0.468864E-03

 Range of element maximum matrix coefficients in global coordinates
 Maximum = 20764.0717 at element 7715.
 Minimum = 10.6169516 at element 122.

   *** ELEMENT MATRIX FORMULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        60  SOLID185      0.007   0.000111
        2        60  SOLID185      0.007   0.000115
        3       100  SOLID185      0.012   0.000116
        4        80  SOLID185      0.009   0.000112
        5       100  SOLID185      0.011   0.000114
        6        60  SOLID185      0.007   0.000110
        7        80  SOLID185      0.010   0.000122
        8        60  SOLID185      0.007   0.000118
        9        80  SOLID185      0.009   0.000114
       10        60  SOLID185      0.007   0.000114
       11       100  SOLID185      0.012   0.000116
       12        60  SOLID185      0.007   0.000111
       13        80  SOLID185      0.009   0.000113
       14        80  SOLID185      0.009   0.000112
       15       260  SOLID185      0.029   0.000111
       16        60  SOLID185      0.007   0.000109
       17        60  SOLID185      0.007   0.000116
       18       100  SOLID185      0.011   0.000113
       19        80  SOLID185      0.009   0.000114
       20       100  SOLID185      0.012   0.000116
       21        60  SOLID185      0.007   0.000119
       22        80  SOLID185      0.009   0.000114
       23        60  SOLID185      0.007   0.000113
       24        80  SOLID185      0.010   0.000120
       25        60  SOLID185      0.007   0.000116
       26       100  SOLID185      0.012   0.000117
       27        60  SOLID185      0.007   0.000112
       28        80  SOLID185      0.009   0.000117
       29        80  SOLID185      0.009   0.000117
       30       260  SOLID185      0.029   0.000112
       31         1  MASS21        0.000   0.000100
       32        18  TARGE170      0.000   0.000004
       33      1320  CONTA174      0.066   0.000050
       34        32  TARGE170      0.000   0.000008
       35      1400  CONTA174      0.043   0.000030
       36      2640  TARGE170      0.006   0.000002
       37      1400  CONTA174      0.042   0.000030
       38      2640  TARGE170      0.006   0.000002
 Time at end of element matrix formulation CP = 3.76757002.

 ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= file.rdb
  FOR POSSIBLE RESUME FROM THIS POINT
     FORCE CONVERGENCE VALUE  =   18.28      CRITERION=  0.8011
    Writing NEWTON-RAPHSON residual forces to file: file.nr001

 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER.
  Number of equations =       12114,    Maximum wavefront =    162

  Process memory allocated for solver              =    11.700 MB
  Process memory required for in-core solution     =    11.319 MB
  Process memory required for out-of-core solution =     8.161 MB

  Total memory allocated for solver                =    40.448 MB
  Total memory required for in-core solution       =    38.937 MB
  Total memory required for out-of-core solution   =    23.168 MB

 *** NOTE ***                            CP =       3.875   TIME= 08:56:56
 The Distributed Sparse Matrix Solver is currently running in the
 in-core memory mode.  This memory mode uses the most amount of memory
 in order to avoid using the hard drive as much as possible, which most
 often results in the fastest solution time.  This mode is recommended
 if enough physical memory is present to accommodate all of the solver
 data.
 curEqn=   2923  totEqn=   2923 Job CP sec=      3.720
      Factor Done= 100% Factor Wall sec=      0.029 rate=       4.2 GFlops
 Distributed sparse solver maximum pivot= 253.024133 at node 2170 UY.
 Distributed sparse solver minimum pivot= 1.15103884 at node 701 UY.
 Distributed sparse solver minimum pivot in absolute value= 1.15103884
 at node 701 UY.
     DISP CONVERGENCE VALUE   =  0.6788E-01  CRITERION=  0.3394E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6788E-01
     DISP CONVERGENCE VALUE   =  0.6677E-01  CRITERION=  0.3394E-02
     LINE SEARCH PARAMETER =  0.9836     SCALED MAX DOF INC = -0.6677E-01
     FORCE CONVERGENCE VALUE  =  0.5911      CRITERION=  0.2711E-02
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2515E-01
     DISP CONVERGENCE VALUE   =  0.2171E-01  CRITERION=  0.3394E-02
     LINE SEARCH PARAMETER =  0.8633     SCALED MAX DOF INC =  0.2171E-01
     FORCE CONVERGENCE VALUE  =  0.1089      CRITERION=  0.1081E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4735E-02
     DISP CONVERGENCE VALUE   =  0.4625E-02  CRITERION=  0.3394E-02
     LINE SEARCH PARAMETER =  0.9767     SCALED MAX DOF INC =  0.4625E-02
     FORCE CONVERGENCE VALUE  =  0.3921E-02  CRITERION=  0.1082E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4541E-03
     DISP CONVERGENCE VALUE   =  0.4541E-03  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.4541E-03
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   4

   *** ELEMENT RESULT CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        60  SOLID185      0.005   0.000079
        2        60  SOLID185      0.005   0.000078
        3       100  SOLID185      0.008   0.000080
        4        80  SOLID185      0.006   0.000079
        5       100  SOLID185      0.008   0.000081
        6        60  SOLID185      0.005   0.000080
        7        80  SOLID185      0.007   0.000084
        8        60  SOLID185      0.005   0.000081
        9        80  SOLID185      0.006   0.000079
       10        60  SOLID185      0.005   0.000083
       11       100  SOLID185      0.008   0.000081
       12        60  SOLID185      0.005   0.000079
       13        80  SOLID185      0.006   0.000079
       14        80  SOLID185      0.006   0.000078
       15       260  SOLID185      0.020   0.000078
       16        60  SOLID185      0.005   0.000082
       17        60  SOLID185      0.005   0.000080
       18       100  SOLID185      0.008   0.000083
       19        80  SOLID185      0.007   0.000082
       20       100  SOLID185      0.008   0.000084
       21        60  SOLID185      0.005   0.000086
       22        80  SOLID185      0.007   0.000083
       23        60  SOLID185      0.005   0.000082
       24        80  SOLID185      0.007   0.000085
       25        60  SOLID185      0.005   0.000087
       26       100  SOLID185      0.008   0.000084
       27        60  SOLID185      0.005   0.000082
       28        80  SOLID185      0.007   0.000087
       29        80  SOLID185      0.007   0.000085
       30       260  SOLID185      0.021   0.000082
       31         1  MASS21        0.000   0.000018
       33       595  CONTA174      0.025   0.000042
       35      1320  CONTA174      0.024   0.000018
       37      1320  CONTA174      0.023   0.000018

   *** NODAL LOAD CALCULATION TIMES
     TYPE    NUMBER   ENAME      TOTAL CP  AVE CP

        1        60  SOLID185      0.000   0.000003
        2        60  SOLID185      0.000   0.000004
        3       100  SOLID185      0.000   0.000004
        4        80  SOLID185      0.000   0.000004
        5       100  SOLID185      0.000   0.000003
        6        60  SOLID185      0.000   0.000003
        7        80  SOLID185      0.000   0.000003
        8        60  SOLID185      0.000   0.000003
        9        80  SOLID185      0.000   0.000003
       10        60  SOLID185      0.000   0.000004
       11       100  SOLID185      0.000   0.000003
       12        60  SOLID185      0.000   0.000003
       13        80  SOLID185      0.000   0.000003
       14        80  SOLID185      0.000   0.000003
       15       260  SOLID185      0.001   0.000004
       16        60  SOLID185      0.000   0.000004
       17        60  SOLID185      0.000   0.000004
       18       100  SOLID185      0.000   0.000004
       19        80  SOLID185      0.000   0.000003
       20       100  SOLID185      0.000   0.000004
       21        60  SOLID185      0.000   0.000004
       22        80  SOLID185      0.000   0.000003
       23        60  SOLID185      0.000   0.000004
       24        80  SOLID185      0.000   0.000003
       25        60  SOLID185      0.000   0.000004
       26       100  SOLID185      0.000   0.000004
       27        60  SOLID185      0.000   0.000004
       28        80  SOLID185      0.000   0.000004
       29        80  SOLID185      0.000   0.000004
       30       260  SOLID185      0.001   0.000004
       31         1  MASS21        0.000   0.000003
       33       595  CONTA174      0.002   0.000003
       35      1320  CONTA174      0.003   0.000002
       37      1320  CONTA174      0.003   0.000002
 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      4
 *** TIME =  0.333333E-01     TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.3030      CRITERION=  0.2194E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.9663E-02  CRITERION=  0.3394E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.9663E-02
     DISP CONVERGENCE VALUE   =  0.9663E-02  CRITERION=  0.3394E-02
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.9663E-02
     FORCE CONVERGENCE VALUE  =  0.3089E-01  CRITERION=  0.2139E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1781E-02
     DISP CONVERGENCE VALUE   =  0.1781E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1781E-02
     FORCE CONVERGENCE VALUE  =  0.3383E-02  CRITERION=  0.2176E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP     2  COMPLETED.    CUM ITER =      6
 *** TIME =  0.666667E-01     TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.2790      CRITERION=  0.3274E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.2495E-02  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2495E-02
     DISP CONVERGENCE VALUE   =  0.2495E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2495E-02
     FORCE CONVERGENCE VALUE  =  0.4428E-02  CRITERION=  0.3277E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP     3  COMPLETED.    CUM ITER =      7
 *** TIME =  0.100000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.2890      CRITERION=  0.4387E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.1968E-02  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1968E-02
     DISP CONVERGENCE VALUE   =  0.1968E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1968E-02
     FORCE CONVERGENCE VALUE  =  0.5312E-02  CRITERION=  0.4367E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP     4  COMPLETED.    CUM ITER =      8
 *** TIME =  0.133333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.3360      CRITERION=  0.6214E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.6747E-02  CRITERION=  0.3394E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6747E-02
     DISP CONVERGENCE VALUE   =  0.4292E-02  CRITERION=  0.3394E-02
     LINE SEARCH PARAMETER =  0.6362     SCALED MAX DOF INC = -0.4292E-02
     FORCE CONVERGENCE VALUE  =  0.1042      CRITERION=  0.5522E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2072E-02
     DISP CONVERGENCE VALUE   =  0.2072E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2072E-02
     FORCE CONVERGENCE VALUE  =  0.9313E-02  CRITERION=  0.5539E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP     5  COMPLETED.    CUM ITER =     10
 *** TIME =  0.166667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.3653      CRITERION=  0.7345E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.5971E-02  CRITERION=  0.3394E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.5971E-02
     DISP CONVERGENCE VALUE   =  0.3728E-02  CRITERION=  0.3394E-02
     LINE SEARCH PARAMETER =  0.6243     SCALED MAX DOF INC = -0.3728E-02
     FORCE CONVERGENCE VALUE  =  0.1234      CRITERION=  0.6715E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1446E-02
     DISP CONVERGENCE VALUE   =  0.1419E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9812     SCALED MAX DOF INC =  0.1419E-02
     FORCE CONVERGENCE VALUE  =  0.7693E-02  CRITERION=  0.6730E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP     6  COMPLETED.    CUM ITER =     12
 *** TIME =  0.200000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.3730      CRITERION=  0.8049E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.1552E-02  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1552E-02
     DISP CONVERGENCE VALUE   =  0.1177E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7584     SCALED MAX DOF INC = -0.1177E-02
     FORCE CONVERGENCE VALUE  =  0.9100E-01  CRITERION=  0.7869E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5262E-03
     DISP CONVERGENCE VALUE   =  0.3767E-03  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7158     SCALED MAX DOF INC =  0.3767E-03
     FORCE CONVERGENCE VALUE  =  0.2577E-01  CRITERION=  0.7918E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP     7  COMPLETED.    CUM ITER =     14
 *** TIME =  0.233333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.4241      CRITERION=  0.9252E-01
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.1486E-02  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1486E-02
     DISP CONVERGENCE VALUE   =  0.1361E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9161     SCALED MAX DOF INC = -0.1361E-02
     FORCE CONVERGENCE VALUE  =  0.3508E-01  CRITERION=  0.9105E-01 <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP     8  COMPLETED.    CUM ITER =     15
 *** TIME =  0.266667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.4295      CRITERION=  0.1041
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.6119E-03  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.6119E-03
     DISP CONVERGENCE VALUE   =  0.6119E-03  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.6119E-03
     FORCE CONVERGENCE VALUE  =  0.1857E-01  CRITERION=  0.1041     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP     9  COMPLETED.    CUM ITER =     16
 *** TIME =  0.300000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.3648      CRITERION=  0.1176
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.2102E-02  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2102E-02
     DISP CONVERGENCE VALUE   =  0.1931E-02  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9187     SCALED MAX DOF INC = -0.1931E-02
     FORCE CONVERGENCE VALUE  =  0.2906E-01  CRITERION=  0.1156     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP    10  COMPLETED.    CUM ITER =     17
 *** TIME =  0.333333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.4710      CRITERION=  0.1265
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.1154E-02  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1154E-02
     DISP CONVERGENCE VALUE   =  0.8353E-03  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7240     SCALED MAX DOF INC =  0.8353E-03
     FORCE CONVERGENCE VALUE  =  0.1313      CRITERION=  0.1290
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1002E-02
     DISP CONVERGENCE VALUE   =  0.8221E-03  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8205     SCALED MAX DOF INC =  0.8221E-03
     FORCE CONVERGENCE VALUE  =  0.2294E-01  CRITERION=  0.1278     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP    11  COMPLETED.    CUM ITER =     19
 *** TIME =  0.366667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.4346      CRITERION=  0.1394
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.2894E-03  CRITERION=  0.3394E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2894E-03
     DISP CONVERGENCE VALUE   =  0.2619E-03  CRITERION=  0.3394E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9050     SCALED MAX DOF INC = -0.2619E-03
     FORCE CONVERGENCE VALUE  =  0.5248E-01  CRITERION=  0.1413     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP    12  COMPLETED.    CUM ITER =     20
 *** TIME =  0.400000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.4762      CRITERION=  0.1540
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.1739E-02  CRITERION=  0.3397E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1739E-02
     DISP CONVERGENCE VALUE   =  0.1739E-02  CRITERION=  0.3397E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1739E-02
     FORCE CONVERGENCE VALUE  =  0.1280E-01  CRITERION=  0.1525     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP    13  COMPLETED.    CUM ITER =     21
 *** TIME =  0.433333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.3896      CRITERION=  0.1628
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.1274E-02  CRITERION=  0.3397E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1274E-02
     DISP CONVERGENCE VALUE   =  0.8411E-03  CRITERION=  0.3397E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6602     SCALED MAX DOF INC =  0.8411E-03
     FORCE CONVERGENCE VALUE  =  0.1322      CRITERION=  0.1652     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP    14  COMPLETED.    CUM ITER =     22
 *** TIME =  0.466667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.6946      CRITERION=  0.1774
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.1552E-02  CRITERION=  0.3397E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1552E-02
     DISP CONVERGENCE VALUE   =  0.1552E-02  CRITERION=  0.3397E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1552E-02
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.3851E-01  CRITERION=  0.1777     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   1
 *** LOAD STEP     1   SUBSTEP    15  COMPLETED.    CUM ITER =     23
 *** TIME =  0.500000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     40 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.3005      CRITERION=  0.1891
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.9407E-03  CRITERION=  0.3403E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.9407E-03
     DISP CONVERGENCE VALUE   =  0.9407E-03  CRITERION=  0.3403E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.9407E-03
     THERE IS TOO MUCH PENETRATION AT     37 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2155E-01  CRITERION=  0.1892     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.4656E-03
     DISP CONVERGENCE VALUE   =  0.3087E-03  CRITERION=  0.3411E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6631     SCALED MAX DOF INC = -0.3087E-03
     THERE IS TOO MUCH PENETRATION AT     36 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2942E-02  CRITERION=  0.1884     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2323E-03
     DISP CONVERGENCE VALUE   =  0.1162E-04  CRITERION=  0.3411E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.5000E-01 SCALED MAX DOF INC =  0.1162E-04
     THERE IS TOO MUCH PENETRATION AT     36 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.8080      CRITERION=  0.2020
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2360E-01
     DISP CONVERGENCE VALUE   =  0.1766E-01  CRITERION=  0.3998E-02
     LINE SEARCH PARAMETER =  0.7484     SCALED MAX DOF INC = -0.1766E-01
     FORCE CONVERGENCE VALUE  =  0.2071      CRITERION=  0.1822
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5343E-02
     DISP CONVERGENCE VALUE   =  0.3882E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7265     SCALED MAX DOF INC =  0.3882E-02
     FORCE CONVERGENCE VALUE  =  0.5116E-01  CRITERION=  0.1900     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    16  COMPLETED.    CUM ITER =     28
 *** TIME =  0.533333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.8303      CRITERION=  0.1920
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.2075E-01  CRITERION=  0.3998E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2075E-01
     DISP CONVERGENCE VALUE   =  0.1572E-01  CRITERION=  0.3998E-02
     LINE SEARCH PARAMETER =  0.7576     SCALED MAX DOF INC = -0.1572E-01
     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1669      CRITERION=  0.2064     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3441E-02
     DISP CONVERGENCE VALUE   =  0.2644E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7684     SCALED MAX DOF INC =  0.2644E-02
     FORCE CONVERGENCE VALUE  =  0.3959E-01  CRITERION=  0.2013     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP    17  COMPLETED.    CUM ITER =     30
 *** TIME =  0.566667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4906      CRITERION=  0.2120
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.4825E-02  CRITERION=  0.3998E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4825E-02
     DISP CONVERGENCE VALUE   =  0.3964E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8215     SCALED MAX DOF INC =  0.3964E-02
     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.9220E-01  CRITERION=  0.2149     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1004E-02
     DISP CONVERGENCE VALUE   =  0.7711E-03  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7684     SCALED MAX DOF INC = -0.7711E-03
     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2209E-01  CRITERION=  0.2134     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3733E-03
     DISP CONVERGENCE VALUE   =  0.1866E-04  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.5000E-01 SCALED MAX DOF INC =  0.1866E-04
     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2009      CRITERION=  0.2147     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2027E-01
     DISP CONVERGENCE VALUE   =  0.1560E-01  CRITERION=  0.3998E-02
     LINE SEARCH PARAMETER =  0.7694     SCALED MAX DOF INC = -0.1560E-01
     FORCE CONVERGENCE VALUE  =  0.1996      CRITERION=  0.2059     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4173E-02
     DISP CONVERGENCE VALUE   =  0.2675E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6409     SCALED MAX DOF INC =  0.2675E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    18  COMPLETED.    CUM ITER =     35
 *** TIME =  0.600000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     32 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4815      CRITERION=  0.2329
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.1293E-01  CRITERION=  0.3998E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1293E-01
     DISP CONVERGENCE VALUE   =  0.9711E-02  CRITERION=  0.3998E-02
     LINE SEARCH PARAMETER =  0.7509     SCALED MAX DOF INC =  0.9711E-02
     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1132      CRITERION=  0.2244     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.4395E-02
     DISP CONVERGENCE VALUE   =  0.3602E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8196     SCALED MAX DOF INC = -0.3602E-02
     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2067E-01  CRITERION=  0.2256     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.4270E-03
     DISP CONVERGENCE VALUE   =  0.4270E-03  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.4270E-03
     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5711      CRITERION=  0.2322
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1940E-01
     DISP CONVERGENCE VALUE   =  0.1681E-01  CRITERION=  0.3998E-02
     LINE SEARCH PARAMETER =  0.8664     SCALED MAX DOF INC = -0.1681E-01
     FORCE CONVERGENCE VALUE  =  0.1164      CRITERION=  0.2223     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2352E-02
     DISP CONVERGENCE VALUE   =  0.1631E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6933     SCALED MAX DOF INC = -0.1631E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    19  COMPLETED.    CUM ITER =     40
 *** TIME =  0.633333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     15 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.6821      CRITERION=  0.2360
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.1747E-01  CRITERION=  0.3998E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1747E-01
     DISP CONVERGENCE VALUE   =  0.1620E-01  CRITERION=  0.3998E-02
     LINE SEARCH PARAMETER =  0.9273     SCALED MAX DOF INC =  0.1620E-01
     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.7670E-01  CRITERION=  0.2370     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1242E-02
     DISP CONVERGENCE VALUE   =  0.1128E-02  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9080     SCALED MAX DOF INC = -0.1128E-02
     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1114E-01  CRITERION=  0.2380     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2413E-03
     DISP CONVERGENCE VALUE   =  0.2413E-03  CRITERION=  0.3998E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2413E-03
     THERE IS TOO MUCH PENETRATION AT     16 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5377      CRITERION=  0.2438
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2368E-01
     DISP CONVERGENCE VALUE   =  0.1816E-01  CRITERION=  0.4063E-02
     LINE SEARCH PARAMETER =  0.7668     SCALED MAX DOF INC = -0.1816E-01
     FORCE CONVERGENCE VALUE  =  0.2202      CRITERION=  0.2299     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4517E-02
     DISP CONVERGENCE VALUE   =  0.3200E-02  CRITERION=  0.4077E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7085     SCALED MAX DOF INC =  0.3200E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    20  COMPLETED.    CUM ITER =     45
 *** TIME =  0.666667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     FORCE CONVERGENCE VALUE  =  0.6275      CRITERION=  0.2464
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.2060E-01  CRITERION=  0.4077E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2060E-01
     DISP CONVERGENCE VALUE   =  0.1625E-01  CRITERION=  0.4077E-02
     LINE SEARCH PARAMETER =  0.7887     SCALED MAX DOF INC = -0.1625E-01
     FORCE CONVERGENCE VALUE  =  0.1723      CRITERION=  0.2557     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3193E-02
     DISP CONVERGENCE VALUE   =  0.2344E-02  CRITERION=  0.4077E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7342     SCALED MAX DOF INC = -0.2344E-02
     FORCE CONVERGENCE VALUE  =  0.3364E-01  CRITERION=  0.2500     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP    21  COMPLETED.    CUM ITER =     47
 *** TIME =  0.700000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5131      CRITERION=  0.2611
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.4405E-02  CRITERION=  0.4077E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.4405E-02
     DISP CONVERGENCE VALUE   =  0.3958E-02  CRITERION=  0.4077E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8983     SCALED MAX DOF INC = -0.3958E-02
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.6150E-01  CRITERION=  0.2630     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.8003E-03
     DISP CONVERGENCE VALUE   =  0.5628E-03  CRITERION=  0.4077E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7032     SCALED MAX DOF INC = -0.5628E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1621E-01  CRITERION=  0.2615     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3831E-03
     DISP CONVERGENCE VALUE   =  0.5054E-04  CRITERION=  0.4077E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.1319     SCALED MAX DOF INC = -0.5054E-04
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2029      CRITERION=  0.2629     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2135E-01
     DISP CONVERGENCE VALUE   =  0.1986E-01  CRITERION=  0.4217E-02
     LINE SEARCH PARAMETER =  0.9302     SCALED MAX DOF INC = -0.1986E-01
     FORCE CONVERGENCE VALUE  =  0.3727E-01  CRITERION=  0.2604     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1752E-02
     DISP CONVERGENCE VALUE   =  0.1155E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6593     SCALED MAX DOF INC =  0.1155E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    22  COMPLETED.    CUM ITER =     52
 *** TIME =  0.733333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      8 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4883      CRITERION=  0.2730
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.2018E-01  CRITERION=  0.4227E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2018E-01
     DISP CONVERGENCE VALUE   =  0.1914E-01  CRITERION=  0.4227E-02
     LINE SEARCH PARAMETER =  0.9485     SCALED MAX DOF INC =  0.1914E-01
     THERE IS TOO MUCH PENETRATION AT      7 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2812E-01  CRITERION=  0.2731     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1737E-02
     DISP CONVERGENCE VALUE   =  0.1737E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1737E-02
     THERE IS TOO MUCH PENETRATION AT      7 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4122E-02  CRITERION=  0.2734     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1585E-03
     DISP CONVERGENCE VALUE   =  0.1585E-03  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1585E-03
     THERE IS TOO MUCH PENETRATION AT      7 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.3237      CRITERION=  0.2762
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2212E-01
     DISP CONVERGENCE VALUE   =  0.1854E-01  CRITERION=  0.4227E-02
     LINE SEARCH PARAMETER =  0.8385     SCALED MAX DOF INC =  0.1854E-01
     FORCE CONVERGENCE VALUE  =  0.1282      CRITERION=  0.2687     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2417E-02
     DISP CONVERGENCE VALUE   =  0.1460E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6042     SCALED MAX DOF INC =  0.1460E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    23  COMPLETED.    CUM ITER =     57
 *** TIME =  0.766667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     12 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5202      CRITERION=  0.2870
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.1780E-01  CRITERION=  0.4227E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1780E-01
     DISP CONVERGENCE VALUE   =  0.1657E-01  CRITERION=  0.4227E-02
     LINE SEARCH PARAMETER =  0.9307     SCALED MAX DOF INC = -0.1657E-01
     THERE IS TOO MUCH PENETRATION AT     12 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4449E-01  CRITERION=  0.2846     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1599E-02
     DISP CONVERGENCE VALUE   =  0.1496E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9356     SCALED MAX DOF INC = -0.1496E-02
     THERE IS TOO MUCH PENETRATION AT     12 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4358E-02  CRITERION=  0.2852     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3930E-03
     DISP CONVERGENCE VALUE   =  0.3930E-03  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.3930E-03
     THERE IS TOO MUCH PENETRATION AT     12 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5621      CRITERION=  0.2914
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1944E-01
     DISP CONVERGENCE VALUE   =  0.1617E-01  CRITERION=  0.4227E-02
     LINE SEARCH PARAMETER =  0.8319     SCALED MAX DOF INC = -0.1617E-01
     FORCE CONVERGENCE VALUE  =  0.2018      CRITERION=  0.2780     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3758E-02
     DISP CONVERGENCE VALUE   =  0.2392E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6364     SCALED MAX DOF INC =  0.2392E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    24  COMPLETED.    CUM ITER =     62
 *** TIME =  0.800000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      9 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.6515      CRITERION=  0.2989
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.1751E-01  CRITERION=  0.4227E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1751E-01
     DISP CONVERGENCE VALUE   =  0.1578E-01  CRITERION=  0.4227E-02
     LINE SEARCH PARAMETER =  0.9013     SCALED MAX DOF INC =  0.1578E-01
     FORCE CONVERGENCE VALUE  =  0.8993E-01  CRITERION=  0.2952     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2493E-02
     DISP CONVERGENCE VALUE   =  0.2051E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8227     SCALED MAX DOF INC = -0.2051E-02
     FORCE CONVERGENCE VALUE  =  0.1597E-01  CRITERION=  0.2972     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP    25  COMPLETED.    CUM ITER =     64
 *** TIME =  0.833333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     13 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4991      CRITERION=  0.3094
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.1495E-02  CRITERION=  0.4227E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1495E-02
     DISP CONVERGENCE VALUE   =  0.1428E-02  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9554     SCALED MAX DOF INC = -0.1428E-02
     THERE IS TOO MUCH PENETRATION AT      9 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4134E-01  CRITERION=  0.3072     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.5492E-03
     DISP CONVERGENCE VALUE   =  0.3572E-03  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6504     SCALED MAX DOF INC = -0.3572E-03
     THERE IS TOO MUCH PENETRATION AT     11 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.8428E-02  CRITERION=  0.3084     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1594E-03
     DISP CONVERGENCE VALUE   =  0.1594E-03  CRITERION=  0.4227E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1594E-03
     THERE IS TOO MUCH PENETRATION AT     11 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5221      CRITERION=  0.3139
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2402E-01
     DISP CONVERGENCE VALUE   =  0.2108E-01  CRITERION=  0.4276E-02
     LINE SEARCH PARAMETER =  0.8775     SCALED MAX DOF INC = -0.2108E-01
     FORCE CONVERGENCE VALUE  =  0.1298      CRITERION=  0.3042     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2794E-02
     DISP CONVERGENCE VALUE   =  0.1843E-02  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6595     SCALED MAX DOF INC =  0.1843E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    26  COMPLETED.    CUM ITER =     69
 *** TIME =  0.866667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.6527      CRITERION=  0.3205
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.2051E-01  CRITERION=  0.4303E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2051E-01
     DISP CONVERGENCE VALUE   =  0.1893E-01  CRITERION=  0.4303E-02
     LINE SEARCH PARAMETER =  0.9230     SCALED MAX DOF INC =  0.1893E-01
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.7581E-01  CRITERION=  0.3186     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2915E-02
     DISP CONVERGENCE VALUE   =  0.2595E-02  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8902     SCALED MAX DOF INC = -0.2595E-02
     THERE IS TOO MUCH PENETRATION AT      2 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1355E-01  CRITERION=  0.3204     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.8619E-03
     DISP CONVERGENCE VALUE   =  0.8619E-03  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.8619E-03
     THERE IS TOO MUCH PENETRATION AT      2 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1556      CRITERION=  0.3211     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1035E-01
     DISP CONVERGENCE VALUE   =  0.8966E-02  CRITERION=  0.4303E-02
     LINE SEARCH PARAMETER =  0.8662     SCALED MAX DOF INC =  0.8966E-02
     FORCE CONVERGENCE VALUE  =  0.6711E-01  CRITERION=  0.3176     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1138E-02
     DISP CONVERGENCE VALUE   =  0.7432E-03  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6533     SCALED MAX DOF INC = -0.7432E-03
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    27  COMPLETED.    CUM ITER =     74
 *** TIME =  0.900000         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4987      CRITERION=  0.3335
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.8299E-02  CRITERION=  0.4303E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.8299E-02
     DISP CONVERGENCE VALUE   =  0.7602E-02  CRITERION=  0.4303E-02
     LINE SEARCH PARAMETER =  0.9160     SCALED MAX DOF INC = -0.7602E-02
     THERE IS TOO MUCH PENETRATION AT      2 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5255E-01  CRITERION=  0.3306     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1094E-02
     DISP CONVERGENCE VALUE   =  0.8570E-03  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7836     SCALED MAX DOF INC = -0.8570E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.9805E-02  CRITERION=  0.3316     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3437E-03
     DISP CONVERGENCE VALUE   =  0.3437E-03  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.3437E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2510      CRITERION=  0.3333     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1786E-01
     DISP CONVERGENCE VALUE   =  0.1645E-01  CRITERION=  0.4303E-02
     LINE SEARCH PARAMETER =  0.9209     SCALED MAX DOF INC = -0.1645E-01
     FORCE CONVERGENCE VALUE  =  0.5849E-01  CRITERION=  0.3295     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1934E-02
     DISP CONVERGENCE VALUE   =  0.1222E-02  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6318     SCALED MAX DOF INC =  0.1222E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    28  COMPLETED.    CUM ITER =     79
 *** TIME =  0.933333         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      2 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5327      CRITERION=  0.3444
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.1615E-01  CRITERION=  0.4303E-02
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1615E-01
     DISP CONVERGENCE VALUE   =  0.1478E-01  CRITERION=  0.4303E-02
     LINE SEARCH PARAMETER =  0.9155     SCALED MAX DOF INC =  0.1478E-01
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.7828E-01  CRITERION=  0.3407     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1703E-02
     DISP CONVERGENCE VALUE   =  0.1166E-02  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6845     SCALED MAX DOF INC =  0.1166E-02
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1613E-01  CRITERION=  0.3429     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   2
 *** LOAD STEP     1   SUBSTEP    29  COMPLETED.    CUM ITER =     81
 *** TIME =  0.966667         TIME INC =  0.333333E-01
 *** AUTO STEP TIME:  NEXT TIME INC = 0.33333E-01  UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      5 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5211      CRITERION=  0.3551
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.2693E-02  CRITERION=  0.4303E-02 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2693E-02
     DISP CONVERGENCE VALUE   =  0.2392E-02  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8881     SCALED MAX DOF INC = -0.2392E-02
     THERE IS TOO MUCH PENETRATION AT      2 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.7183E-01  CRITERION=  0.3527     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.6400E-03
     DISP CONVERGENCE VALUE   =  0.4234E-03  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6615     SCALED MAX DOF INC =  0.4234E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2007E-01  CRITERION=  0.3541     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2703E-03
     DISP CONVERGENCE VALUE   =  0.2703E-03  CRITERION=  0.4303E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.2703E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2084      CRITERION=  0.3555     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2409E-01
     DISP CONVERGENCE VALUE   =  0.1971E-01  CRITERION=  0.4303E-02
     LINE SEARCH PARAMETER =  0.8182     SCALED MAX DOF INC =  0.1971E-01
     FORCE CONVERGENCE VALUE  =  0.1488      CRITERION=  0.3485     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2573E-02
     DISP CONVERGENCE VALUE   =  0.1577E-02  CRITERION=  0.4356E-02 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6130     SCALED MAX DOF INC = -0.1577E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     1   SUBSTEP    30  COMPLETED.    CUM ITER =     86
 *** TIME =   1.00000         TIME INC =  0.333333E-01


 *** MAPDL BINARY FILE STATISTICS
  BUFFER SIZE USED= 16384
        0.125 MB WRITTEN ON ELEMENT MATRIX FILE: file0.emat
       13.312 MB WRITTEN ON ELEMENT SAVED DATA FILE: file0.esav
        3.125 MB WRITTEN ON ASSEMBLED MATRIX FILE: file0.full
       12.250 MB WRITTEN ON RESULTS FILE: file0.rst
 *************** Write FE CONNECTORS *********

 WRITE OUT CONSTRAINT EQUATIONS TO FILE= file.ce
 ****************************************************
 *************** FINISHED SOLVE FOR LS 1 *************
 ****************************************************
 ******************* SOLVE FOR LS 2 OF 2 ****************

 PRINTOUT RESUMED BY /GOP

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP

 USE      10 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM
 FOR AUTOMATIC TIME STEPPING:
   USE   1000 SUBSTEPS AS A MAXIMUM
   USE     10 SUBSTEPS AS A MINIMUM

 TIME=  2.0000

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE.


 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE
   FOR ALL APPLICABLE ENTITIES

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE EANG ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE ETMP ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE VENG ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE CONT ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR ALL APPLICABLE ENTITIES

 WRITE MISC ITEMS TO THE DATABASE WITH A FREQUENCY OF    -10
   FOR THE ENTITIES DEFINED BY COMPONENT _ELMISC

 NLDIAG: Nonlinear diagnostics NRRE option is set to ON.
 The number of files/iterations to be saved for NRRE nonlinear diagnostics has been set to   4

 *****  MAPDL SOLVE    COMMAND  *****

 *** NOTE ***                            CP =      59.004   TIME= 08:57:51
 This nonlinear analysis defaults to using the full Newton-Raphson
 solution procedure.  This can be modified using the NROPT command.

 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:57:51  MAY 06, 2024 CP=     59.054

 --Static Structural



                      L O A D   S T E P   O P T I O N S

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     2
   TIME AT END OF THE LOAD STEP. . . . . . . . . .  2.0000
   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON
      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .    10
      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .  1000
      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10
   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15
   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO
   STRESS-STIFFENING . . . . . . . . . . . . . . .    ON
   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)
   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS
   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT
   DATABASE OUTPUT CONTROLS
      ITEM     FREQUENCY   COMPONENT
       ALL       NONE
      NSOL        -10
      RSOL        -10
      EANG        -10
      ETMP        -10
      VENG        -10
      STRS        -10
      EPEL        -10
      EPPL        -10
      CONT        -10
      MISC        -10       _ELMISC


 SOLUTION MONITORING INFO IS WRITTEN TO FILE= file.mntr
 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED
  TO BE, NEQIT = 25, BY SOLUTION CONTROL LOGIC.

     FORCE CONVERGENCE VALUE  =  0.2017E-01  CRITERION=  0.3538
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =   1.000      CRITERION=  0.5000E-01
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  -1.000
     DISP CONVERGENCE VALUE   =  0.5000E-01  CRITERION=  0.5000E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.5000E-01 SCALED MAX DOF INC = -0.5000E-01
     FORCE CONVERGENCE VALUE  =  0.3547E-01  CRITERION=  0.3547     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.9508
     DISP CONVERGENCE VALUE   =  0.9508      CRITERION=  0.5004E-01
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.9508
     THERE IS TOO MUCH PENETRATION AT     14 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   10.75      CRITERION=  0.4014
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1519E-01
     DISP CONVERGENCE VALUE   =  0.1058E-01  CRITERION=  0.5012E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6971     SCALED MAX DOF INC = -0.1058E-01
     FORCE CONVERGENCE VALUE  =   3.307      CRITERION=  0.3349
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1037E-01
     DISP CONVERGENCE VALUE   =  0.8372E-02  CRITERION=  0.5012E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8072     SCALED MAX DOF INC =  0.8372E-02
     THERE IS TOO MUCH PENETRATION AT      7 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.6292      CRITERION=  0.3589
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2786E-02
     DISP CONVERGENCE VALUE   =  0.2614E-02  CRITERION=  0.5012E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9381     SCALED MAX DOF INC = -0.2614E-02
     THERE IS TOO MUCH PENETRATION AT      6 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.5130E-01  CRITERION=  0.3579     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5437E-03
     DISP CONVERGENCE VALUE   =  0.3504E-03  CRITERION=  0.5012E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6444     SCALED MAX DOF INC =  0.3504E-03
     THERE IS TOO MUCH PENETRATION AT      8 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1490E-01  CRITERION=  0.3592     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   7 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2298E-03
     DISP CONVERGENCE VALUE   =  0.2298E-03  CRITERION=  0.5012E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.2298E-03
     THERE IS TOO MUCH PENETRATION AT      8 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4153      CRITERION=  0.4272     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   8 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2393E-01
     DISP CONVERGENCE VALUE   =  0.1985E-01  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8297     SCALED MAX DOF INC = -0.1985E-01
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   8
 *** LOAD STEP     2   SUBSTEP     1  COMPLETED.    CUM ITER =     94
 *** TIME =   1.10000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     FORCE CONVERGENCE VALUE  =   24.07      CRITERION=  0.4370
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
     DISP CONVERGENCE VALUE   =  0.2250E-01  CRITERION=  0.5032E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2250E-01
     DISP CONVERGENCE VALUE   =  0.1776E-01  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7894     SCALED MAX DOF INC =  0.1776E-01
     FORCE CONVERGENCE VALUE  =   5.306      CRITERION=  0.3069
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2660E-01
     DISP CONVERGENCE VALUE   =  0.2025E-01  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7613     SCALED MAX DOF INC =  0.2025E-01
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   1.222      CRITERION=  0.3643
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3345E-02
     DISP CONVERGENCE VALUE   =  0.3270E-02  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9775     SCALED MAX DOF INC =  0.3270E-02
     FORCE CONVERGENCE VALUE  =  0.7823E-01  CRITERION=  0.3618     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1199E-02
     DISP CONVERGENCE VALUE   =  0.1199E-02  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1199E-02
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.3363E-01  CRITERION=  0.3658     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.7746E-03
     DISP CONVERGENCE VALUE   =  0.7746E-03  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.7746E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2421      CRITERION=  0.3660     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.9756E-02
     DISP CONVERGENCE VALUE   =  0.8608E-02  CRITERION=  0.5032E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8824     SCALED MAX DOF INC = -0.8608E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   6
 *** LOAD STEP     2   SUBSTEP     2  COMPLETED.    CUM ITER =    100
 *** TIME =   1.20000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   24.31      CRITERION=  0.4580
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.2661E-01  CRITERION=  0.5053E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2661E-01
     DISP CONVERGENCE VALUE   =  0.1996E-01  CRITERION=  0.5053E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7500     SCALED MAX DOF INC =  0.1996E-01
     FORCE CONVERGENCE VALUE  =   6.266      CRITERION=  0.3122
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2416E-01
     DISP CONVERGENCE VALUE   =  0.1961E-01  CRITERION=  0.5053E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8115     SCALED MAX DOF INC =  0.1961E-01
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   1.155      CRITERION=  0.3709
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3860E-02
     DISP CONVERGENCE VALUE   =  0.3498E-02  CRITERION=  0.5053E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9062     SCALED MAX DOF INC =  0.3498E-02
     FORCE CONVERGENCE VALUE  =  0.1412      CRITERION=  0.3664     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1954E-02
     DISP CONVERGENCE VALUE   =  0.1954E-02  CRITERION=  0.5053E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.1954E-02
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4328E-01  CRITERION=  0.3715     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1022E-02
     DISP CONVERGENCE VALUE   =  0.9672E-03  CRITERION=  0.5053E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9465     SCALED MAX DOF INC = -0.9672E-03
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     2   SUBSTEP     3  COMPLETED.    CUM ITER =    105
 *** TIME =   1.30000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     THERE IS TOO MUCH PENETRATION AT      7 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   24.67      CRITERION=  0.4753
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
     DISP CONVERGENCE VALUE   =  0.3206E-01  CRITERION=  0.5079E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3206E-01
     DISP CONVERGENCE VALUE   =  0.2343E-01  CRITERION=  0.5079E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7308     SCALED MAX DOF INC = -0.2343E-01
     FORCE CONVERGENCE VALUE  =   6.806      CRITERION=  0.3179
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2304E-01
     DISP CONVERGENCE VALUE   =  0.2002E-01  CRITERION=  0.5079E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8692     SCALED MAX DOF INC = -0.2002E-01
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.8811      CRITERION=  0.3766
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.5022E-02
     DISP CONVERGENCE VALUE   =  0.4345E-02  CRITERION=  0.5079E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8651     SCALED MAX DOF INC =  0.4345E-02
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.1447      CRITERION=  0.3722     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2265E-02
     DISP CONVERGENCE VALUE   =  0.2265E-02  CRITERION=  0.5079E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.2265E-02
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.3574E-01  CRITERION=  0.3767     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.9856E-03
     DISP CONVERGENCE VALUE   =  0.9856E-03  CRITERION=  0.5079E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.9856E-03
     THERE IS TOO MUCH PENETRATION AT      3 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.2165      CRITERION=  0.3772     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   6 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1096E-01
     DISP CONVERGENCE VALUE   =  0.8875E-02  CRITERION=  0.5079E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8097     SCALED MAX DOF INC = -0.8875E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   6
 *** LOAD STEP     2   SUBSTEP     4  COMPLETED.    CUM ITER =    111
 *** TIME =   1.40000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     FORCE CONVERGENCE VALUE  =   25.11      CRITERION=  0.4759
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.2700E-01  CRITERION=  0.5090E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.2700E-01
     DISP CONVERGENCE VALUE   =  0.2009E-01  CRITERION=  0.5090E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7439     SCALED MAX DOF INC = -0.2009E-01
     FORCE CONVERGENCE VALUE  =   6.648      CRITERION=  0.3171
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2594E-01
     DISP CONVERGENCE VALUE   =  0.2147E-01  CRITERION=  0.5090E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8276     SCALED MAX DOF INC =  0.2147E-01
     THERE IS TOO MUCH PENETRATION AT      1 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   1.122      CRITERION=  0.3826
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.6505E-02
     DISP CONVERGENCE VALUE   =  0.5446E-02  CRITERION=  0.5090E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8372     SCALED MAX DOF INC =  0.5446E-02
     FORCE CONVERGENCE VALUE  =  0.2101      CRITERION=  0.3769     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3231E-02
     DISP CONVERGENCE VALUE   =  0.3231E-02  CRITERION=  0.5090E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.3231E-02
     THERE IS TOO MUCH PENETRATION AT      4 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =  0.4635E-01  CRITERION=  0.3827     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1279E-02
     DISP CONVERGENCE VALUE   =  0.1045E-02  CRITERION=  0.5090E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8166     SCALED MAX DOF INC = -0.1045E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     2   SUBSTEP     5  COMPLETED.    CUM ITER =    116
 *** TIME =   1.50000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     THERE IS TOO MUCH PENETRATION AT     10 CONTACT POINTS OF THE 3D CONTACT ELEMENTS
     FORCE CONVERGENCE VALUE  =   25.84      CRITERION=  0.5520
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
     DISP CONVERGENCE VALUE   =  0.4051E-01  CRITERION=  0.5147E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4051E-01
     DISP CONVERGENCE VALUE   =  0.2797E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.6904     SCALED MAX DOF INC =  0.2797E-01
     FORCE CONVERGENCE VALUE  =   8.086      CRITERION=  0.3312
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2545E-01
     DISP CONVERGENCE VALUE   =  0.2452E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9636     SCALED MAX DOF INC =  0.2452E-01
     FORCE CONVERGENCE VALUE  =  0.3236      CRITERION=  0.3868     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.8393E-02
     DISP CONVERGENCE VALUE   =  0.8393E-02  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.8393E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   3
 *** LOAD STEP     2   SUBSTEP     6  COMPLETED.    CUM ITER =    119
 *** TIME =   1.60000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     FORCE CONVERGENCE VALUE  =   26.31      CRITERION=  0.4753
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.2074E-01  CRITERION=  0.5147E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2074E-01
     DISP CONVERGENCE VALUE   =  0.1635E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7882     SCALED MAX DOF INC =  0.1635E-01
     FORCE CONVERGENCE VALUE  =   5.952      CRITERION=  0.3151
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3501E-01
     DISP CONVERGENCE VALUE   =  0.2813E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8036     SCALED MAX DOF INC =  0.2813E-01
     FORCE CONVERGENCE VALUE  =   1.118      CRITERION=  0.3945
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1024E-01
     DISP CONVERGENCE VALUE   =  0.8888E-02  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8677     SCALED MAX DOF INC =  0.8888E-02
     FORCE CONVERGENCE VALUE  =  0.1883      CRITERION=  0.3889     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4317E-02
     DISP CONVERGENCE VALUE   =  0.4317E-02  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.4317E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   4
 *** LOAD STEP     2   SUBSTEP     7  COMPLETED.    CUM ITER =    123
 *** TIME =   1.70000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     FORCE CONVERGENCE VALUE  =   27.62      CRITERION=  0.5460
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.3367E-01  CRITERION=  0.5147E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3367E-01
     DISP CONVERGENCE VALUE   =  0.2487E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7388     SCALED MAX DOF INC =  0.2487E-01
     FORCE CONVERGENCE VALUE  =   7.451      CRITERION=  0.3244
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3493E-01
     DISP CONVERGENCE VALUE   =  0.3156E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.9034     SCALED MAX DOF INC =  0.3156E-01
     FORCE CONVERGENCE VALUE  =  0.7238      CRITERION=  0.4000
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1305E-01
     DISP CONVERGENCE VALUE   =  0.1110E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8502     SCALED MAX DOF INC =  0.1110E-01
     FORCE CONVERGENCE VALUE  =  0.1419      CRITERION=  0.3959     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4450E-02
     DISP CONVERGENCE VALUE   =  0.4450E-02  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.4450E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   4
 *** LOAD STEP     2   SUBSTEP     8  COMPLETED.    CUM ITER =    127
 *** TIME =   1.80000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     FORCE CONVERGENCE VALUE  =   29.30      CRITERION=  0.5574
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.3328E-01  CRITERION=  0.5147E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3328E-01
     DISP CONVERGENCE VALUE   =  0.2511E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7546     SCALED MAX DOF INC =  0.2511E-01
     FORCE CONVERGENCE VALUE  =   7.504      CRITERION=  0.3216
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4102E-01
     DISP CONVERGENCE VALUE   =  0.3642E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8877     SCALED MAX DOF INC =  0.3642E-01
     FORCE CONVERGENCE VALUE  =  0.8425      CRITERION=  0.4067
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1729E-01
     DISP CONVERGENCE VALUE   =  0.1454E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.8410     SCALED MAX DOF INC =  0.1454E-01
     FORCE CONVERGENCE VALUE  =  0.1814      CRITERION=  0.4007     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.6814E-02
     DISP CONVERGENCE VALUE   =  0.6814E-02  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  0.6814E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   4
 *** LOAD STEP     2   SUBSTEP     9  COMPLETED.    CUM ITER =    131
 *** TIME =   1.90000         TIME INC =  0.100000
 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000      UNCHANGED

     FORCE CONVERGENCE VALUE  =   31.92      CRITERION=  0.5800
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
     DISP CONVERGENCE VALUE   =  0.3445E-01  CRITERION=  0.5147E-01 <<< CONVERGED
    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.3445E-01
     DISP CONVERGENCE VALUE   =  0.2643E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7672     SCALED MAX DOF INC =  0.2643E-01
     FORCE CONVERGENCE VALUE  =   7.815      CRITERION=  0.3188
    Writing NEWTON-RAPHSON residual forces to file: file.nr004
    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.4621E-01
     DISP CONVERGENCE VALUE   =  0.3689E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7984     SCALED MAX DOF INC =  0.3689E-01
     FORCE CONVERGENCE VALUE  =   1.545      CRITERION=  0.4152
    Writing NEWTON-RAPHSON residual forces to file: file.nr001
    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.2200E-01
     DISP CONVERGENCE VALUE   =  0.1642E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7461     SCALED MAX DOF INC =  0.1642E-01
     FORCE CONVERGENCE VALUE  =  0.5238      CRITERION=  0.3976
    Writing NEWTON-RAPHSON residual forces to file: file.nr002
    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.1726E-01
     DISP CONVERGENCE VALUE   =  0.1350E-01  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =  0.7820     SCALED MAX DOF INC =  0.1350E-01
     FORCE CONVERGENCE VALUE  =  0.1013      CRITERION=  0.4106     <<< CONVERGED
    Writing NEWTON-RAPHSON residual forces to file: file.nr003
    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.1772E-02
     DISP CONVERGENCE VALUE   =  0.1772E-02  CRITERION=  0.5147E-01 <<< CONVERGED
     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.1772E-02
    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5
 *** LOAD STEP     2   SUBSTEP    10  COMPLETED.    CUM ITER =    136
 *** TIME =   2.00000         TIME INC =  0.100000
 ****************************************************
 *************** FINISHED SOLVE FOR LS 2 *************

 *GET  _WALLASOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.97194444

 PRINTOUT RESUMED BY /GOP

 FINISH SOLUTION PROCESSING


 ***** ROUTINE COMPLETED *****  CP =        88.091



 *** MAPDL - ENGINEERING ANALYSIS SYSTEM  RELEASE 2024 R1          24.1     ***
 Ansys Mechanical Enterprise
 00000000  VERSION=LINUX x64     08:58:19  MAY 06, 2024 CP=     88.093

 --Static Structural



          ***** MAPDL RESULTS INTERPRETATION (POST1) *****

 *** NOTE ***                            CP =      88.094   TIME= 08:58:19
 Reading results into the database (SET command) will update the current
 displacement and force boundary conditions in the database with the
 values from the results file for that load set.  Note that any
 subsequent solutions will use these values unless action is taken to
 either SAVE the current values or not overwrite them (/EXIT,NOSAVE).

 Set Encoding of XML File to:ISO-8859-1

 Set Output of XML File to:
     PARM,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,
         ,     ,     ,     ,     ,     ,     ,

 DATABASE WRITTEN ON FILE  parm.xml

 EXIT THE MAPDL POST1 DATABASE PROCESSOR


 ***** ROUTINE COMPLETED *****  CP =        88.096



 PRINTOUT RESUMED BY /GOP

 *GET  _WALLDONE  FROM  ACTI  ITEM=TIME WALL  VALUE=  8.97194444

 PARAMETER _PREPTIME =     0.000000000

 PARAMETER _SOLVTIME =     85.00000000

 PARAMETER _POSTTIME =     0.000000000

 PARAMETER _TOTALTIM =     85.00000000

 *GET  _DLBRATIO  FROM  ACTI  ITEM=SOLU DLBR  VALUE=  1.27537027

 *GET  _COMBTIME  FROM  ACTI  ITEM=SOLU COMB  VALUE= 0.193688667

 *GET  _SSMODE   FROM  ACTI  ITEM=SOLU SSMM  VALUE=  2.00000000

 *GET  _NDOFS    FROM  ACTI  ITEM=SOLU NDOF  VALUE=  12114.0000

 *GET  _SOL_END_TIME  FROM  ACTI  ITEM=SET  TIME  VALUE=  2.00000000

 *IF  _sol_end_time                     ( =   2.00000     )  EQ
      2.000000                          ( =   2.00000     )  THEN

 /FCLEAN COMMAND REMOVING ALL LOCAL FILES

 *ENDIF
 --- Total number of nodes = 4254
 --- Total number of elements = 12091
 --- Element load balance ratio = 1.27537027
 --- Time to combine distributed files = 0.193688667
 --- Sparse memory mode = 2
 --- Number of DOF = 12114

 EXIT MAPDL WITHOUT SAVING DATABASE


 NUMBER OF WARNING MESSAGES ENCOUNTERED=          5
 NUMBER OF ERROR   MESSAGES ENCOUNTERED=          0

+--------------------- M A P D L   S T A T I S T I C S ------------------------+

Release: 2024 R1            Build: 24.1       Update: UP20231106   Platform: LINUX x64
Date Run: 05/06/2024   Time: 08:58     Process ID: 6837
Operating System: Ubuntu 20.04.6 LTS

Processor Model: AMD EPYC 7763 64-Core Processor

Compiler: Intel(R) Fortran Compiler Classic Version 2021.9  (Build: 20230302)
          Intel(R) C/C++ Compiler Classic Version 2021.9  (Build: 20230302)
          Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122
          BLAS Library supplied by AMD BLIS

Number of machines requested            :    1
Total number of cores available         :    8
Number of physical cores available      :    4
Number of processes requested           :    4
Number of threads per process requested :    1
Total number of cores requested         :    4 (Distributed Memory Parallel)
MPI Type: INTELMPI
MPI Version: Intel(R) MPI Library 2021.10 for Linux* OS


GPU Acceleration: Not Requested

Job Name: file0
Input File: dummy.dat

  Core                Machine Name   Working Directory
 -----------------------------------------------------
     0                d0781433be37   /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural
     1                d0781433be37   /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural
     2                d0781433be37   /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural
     3                d0781433be37   /tmp/ANSYS.root.1/AnsysMechFDE0/Project_Mech_Files/StaticStructural

Latency time from master to core     1 =    2.167 microseconds
Latency time from master to core     2 =    2.168 microseconds
Latency time from master to core     3 =    2.134 microseconds

Communication speed from master to core     1 = 11953.67 MB/sec
Communication speed from master to core     2 = 15642.81 MB/sec
Communication speed from master to core     3 = 16883.96 MB/sec

Total CPU time for main thread                    :       75.9 seconds
Total CPU time summed for all threads             :       88.7 seconds

Elapsed time spent obtaining a license            :        0.3 seconds
Elapsed time spent pre-processing model (/PREP7)  :        0.0 seconds
Elapsed time spent solution - preprocessing       :        0.7 seconds
Elapsed time spent computing solution             :       83.5 seconds
Elapsed time spent solution - postprocessing      :        0.2 seconds
Elapsed time spent post-processing model (/POST1) :        0.0 seconds

Equation solver used                              :            Sparse (symmetric)
Equation solver computational rate                :       36.2 Gflops
Equation solver effective I/O rate                :       25.7 GB/sec

Sum of disk space used on all processes           :      220.2 MB

Sum of memory used on all processes               :      609.0 MB
Sum of memory allocated on all processes          :     2880.0 MB
Physical memory available                         :         31 GB
Total amount of I/O written to disk               :       13.7 GB
Total amount of I/O read from disk                :      115.8 GB

+------------------ E N D   M A P D L   S T A T I S T I C S -------------------+


 *-----------------------------------------------------------------------------*
 |                                                                             |
 |                               RUN COMPLETED                                 |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |  Ansys MAPDL 2024 R1         Build 24.1         UP20231106    LINUX x64     |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |  Database Requested(-db)     1024 MB     Scratch Memory Requested   1024 MB |
 |  Max Database Used(Master)     19 MB     Max Scratch Used(Master)    150 MB |
 |  Max Database Used(Workers)     1 MB     Max Scratch Used(Workers)   152 MB |
 |  Sum Database Used(All)        22 MB     Sum Scratch Used(All)       587 MB |
 |                                                                             |
 |-----------------------------------------------------------------------------|
 |                                                                             |
 |        CP Time      (sec) =         88.728       Time  =  08:58:20          |
 |        Elapsed Time (sec) =         87.000       Date  =  05/06/2024        |
 |                                                                             |
 *-----------------------------------------------------------------------------*

Close mechanical#

Close the mechanical instance.

mechanical.exit()

Total running time of the script: (1 minutes 41.115 seconds)

Gallery generated by Sphinx-Gallery